admin管理员组

文章数量:1660165

因果分析是在统计领域内建立因果关系的实验分析。在数据分析中,我们始终对因果关系问题感到困扰,通常从统计角度对可用数据进行分析。虽然知道因果关系的金钥匙是 A/B 测试,但是由于某些原因(例如时间限制,成本或只是没有数据)无法进行测试,该怎么办。在这里,我们可以应用因果分析来估计干预(功能)对结果的影响。因果分析在本质上与机器学习建模预测不同。虽然我们可以尝试通过学习数据模式来预测结果,但是我们永远不知道在数据维度之外会发生什么。试想一下,您明天可能会考试并决定连续学习两个小时。结果是在两个小时的学习干预下您的考试成绩,但是如果您只学习一小时怎么办?有什么效果吗?我们不能倒退时间。这就是为什么我们进行因果分析而不是机器学习预测的原因。这样的反事实数据不存在,这就是机器无法学习的原因。我们只能学习一个小时的结果是我们无法观察到的,因为我们无法倒带时间。这就是为什么这种情况称为“反事实”。这是因果分析的根本问题。我们只能近似预估因果效应。

近似预估因果效应的最佳库之一是 DoWhy 包。在本文中分享如何使用 DoWhy 来确定分析中的因果关系。

DoWhy的因果分析

根据 DoWhy 官方文档,因果关系分析共有以下 4 个步骤:

根据假设对因果推理问题进行建模
确定因果效应表述(“因果估计”)
使用统计方法(例如匹配或工具变量)估计
使用各种稳健性检验来验证估计有效性

1、定义问题

在开始分析数据之前,我们需要定义要解决的问题。在客户流失数据集中,假设我们正在与信贷部门合作,我们想知道信贷额度是否对客户流失具有因果关系。信贷部门限制࿰

本文标签: 微软因果开源入门快速