admin管理员组

文章数量:1635402

接上一篇文章,话不多说直接开始

一、打开我们创建的工程文件,先就建立一个文件夹用来存放我们写的子文件(不建立也行),然后建立pid.h,pid.c存入我们建立的文件夹中,并把它的源文件和头文件添加进去,最后记得编译一下。

二、遥控器部分

  1. 先在main.h 中定义一个遥控器接收数据的结构体,参考了官方的定义不过我删了一部分不需要的。

typedef struct
{
    struct
    { 
        signed short ch0;
        signed short ch1;
        signed short ch2;
        signed short ch3;
        unsigned char s1;
        unsigned char s2;
        
        unsigned short sw;
    }rc;
}DBUS;
  1. 在main函数里初始化和中断使能DMA,注意这里我们是用了串口1来接收数据的

      HAL_UART_Receive_DMA(&huart1,dbus_resive,18);//初始化DMA
    __HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//中断使能DMA
  1. 遥控接收到的数据需要进行拼接一下,如果大家不懂可以参考一下这位大佬下的这篇博客(https://blog.csdn/weixin_45850927/article/details/121299686

uint8_t dbus_resive[18]; //用来储存接收到的数据的数组

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle) 
{  
    remoter.rc.ch0 = (dbus_resive[0]| (dbus_resive[1] << 8)) & 0x07ff;          
    remoter.rc.ch0 -= 1024;
    remoter.rc.ch1 = ((dbus_resive[1] >> 3) | (dbus_resive[2] << 5)) & 0x07ff;       
    remoter.rc.ch1 -= 1024;
    remoter.rc.ch2 = ((dbus_resive[2] >> 6) | (dbus_resive[3] << 2) | (dbus_resive[4] << 10)) & 0x07ff;          
    remoter.rc.ch2 -= 1024;
    remoter.rc.ch3 = ((dbus_resive[4] >> 1) | (dbus_resive[5] << 7)) & 0x07ff;           
    remoter.rc.ch3 -= 1024;
    remoter.rc.s1  = ((dbus_resive[5] >> 4)& 0x000C) >> 2;                           
    remoter.rc.s2  = ((dbus_resive[5] >> 4)& 0x0003);  
 
    remoter.rc.sw = dbus_resive[16]|(dbus_resive[17]<<8);
}

经过处理后我们接收到四个通道的数据范围是(-660~660)

三,PID部分(PID其实网上资料有很多,这里就不详细介绍,直接贴代码,我用的是最简单的【笑哭】)

#ifndef __PID_H__
#define __PID_H__

#include "stdint.h"

typedef float fp32;

enum PID_MODE
{
    PID_POSITION = 0,
    PID_DELTA
};

typedef struct
{
    uint8_t mode;
    //PID 三参数
    fp32 Kp;
    fp32 Ki;
    fp32 Kd;

    fp32 max_out;  //最大输出
    fp32 max_iout; //最大积分输出

    fp32 set;
    fp32 fdb;

    fp32 out;
    fp32 Pout;
    fp32 Iout;
    fp32 Dout;
    fp32 Dbuf[3];  //微分项 0最新 1上一次 2上上次
    fp32 error[3]; //误差项 0最新 1上一次 2上上次

} PidTypeDef;

fp32 PID_Calc(PidTypeDef *pid,fp32 ref,fp32 set);
void PID_init(PidTypeDef *pid,uint8_t mode,const fp32 PID[3],fp32 max_out,fp32 max_iout);

#endif
#include "pid.h"
#include "main.h"

#define LimitMax(input, max)       \
{                                        \
    if (input > max)                       \
  {                                      \
        input = max;                            \
  }                                      \
  else if (input < -max)                 \
  {                                      \
        input = -max;                        \
  }                                      \
}

void PID_init(PidTypeDef *pid,uint8_t mode,const fp32 PID[3],fp32 max_out,fp32 max_iout)
{
    if(pid==NULL||PID==NULL)
    {
        return;
    }
    pid->mode=mode;
    pid->Kp=PID[0];
    pid->Ki=PID[1];
    pid->Kd=PID[2];
    pid->max_out=max_out;
    pid->max_iout=max_iout;
    pid->Dbuf[0]=pid->Dbuf[1]=pid->Dbuf[2]=0.0f;
    pid->error[0]=pid->error[1]=pid->error[2]=pid->Pout=pid->Iout=pid->Dout=pid->out=0.0f;
}

fp32 PID_Calc(PidTypeDef *pid, fp32 ref, fp32 set)
{
    if (pid == NULL)
    {
        return 0.0f;
    }

    pid->error[2] = pid->error[1];
    pid->error[1] = pid->error[0];
    pid->set = set;
    pid->fdb = ref;
    pid->error[0] = set - ref;
    if (pid->mode == PID_POSITION)
    {
        pid->Pout = pid->Kp * pid->error[0];
        pid->Iout += pid->Ki * pid->error[0];
        pid->Dbuf[2] = pid->Dbuf[1];
        pid->Dbuf[1] = pid->Dbuf[0];
        pid->Dbuf[0] = (pid->error[0] - pid->error[1]);
        pid->Dout = pid->Kd * pid->Dbuf[0];
        LimitMax(pid->Iout, pid->max_iout);
        pid->out = pid->Pout + pid->Iout + pid->Dout;
        LimitMax(pid->out, pid->max_out);
    }
    else if (pid->mode == PID_DELTA)
    {
        pid->Pout = pid->Kp * (pid->error[0] - pid->error[1]);
        pid->Iout = pid->Ki * pid->error[0];
        pid->Dbuf[2] = pid->Dbuf[1];
        pid->Dbuf[1] = pid->Dbuf[0];
        pid->Dbuf[0] = (pid->error[0] - 2.0f * pid->error[1] + pid->error[2]);
        pid->Dout = pid->Kd * pid->Dbuf[0];
        pid->out += pid->Pout + pid->Iout + pid->Dout;
        LimitMax(pid->out, pid->max_out);
    }
    return pid->out;
}

四,电机部分(因为我们只需要简单控个电机,所以就只需要在main.h中定义一些我们需要的就可以了)

typedef enum
{
  CAN_CHASSIS_ALL_ID = 0x200,
  CAN_AUXILIARY_ALL_ID = 0x1FF,
  motor1 = 0x201,
  motor2 = 0x202,
  motor3 = 0x203,
  motor4 = 0x204,
}can_msg_id;

typedef struct 
{
    uint16_t angle_value;
    int16_t speed_rpm;
    int16_t real_current;
    uint8_t temperate;
    int16_t real_angle;
}motor_measure_t;

五,CAN

  1. CAN基础的配置CUBEMX已经配置好了

  1. 配置CAN的过滤器

void can_filter_init(void)
{

    CAN_FilterTypeDef can_filter_st;

    can_filter_st.FilterActivation = ENABLE;
    can_filter_st.FilterMode = CAN_FILTERMODE_IDMASK;
    can_filter_st.FilterScale = CAN_FILTERSCALE_32BIT;
    can_filter_st.FilterIdHigh = 0x0000;
    can_filter_st.FilterIdLow = 0x0000;
    can_filter_st.FilterMaskIdHigh = 0x0000;
    can_filter_st.FilterMaskIdLow = 0x0000;
    can_filter_st.FilterBank = 0;
    can_filter_st.FilterFIFOAssignment = CAN_RX_FIFO0;
    HAL_CAN_ConfigFilter(&hcan1, &can_filter_st);
}

如果不太清楚可以参考一下这位大佬写的(https://blog.csdn/weixin_44663976/article/details/126138298

  1. 配置完过滤器就可以开启CAN的使用了(这两步很重要,不要漏了)

HAL_CAN_Start(&hcan1);//启动CAN1
HAL_CAN_ActivateNotification(&hcan1,CAN_IT_RX_FIFO0_MSG_PENDING);//使能中断

写到一个函数里防漏

void can1_start(void)
{
    can_filter_init();
    HAL_CAN_Start(&hcan1);//启动CAN1
    HAL_CAN_ActivateNotification(&hcan1,CAN_IT_RX_FIFO0_MSG_PENDING);//使能中断
}
  1. 要让M3508电机转呢就要给电机发送电流

uint8_t chassis_can_send_data[8];  //用于接收电机的原始数据
CAN_TxHeaderTypeDef chassis_tx_message;


/**
  * @brief          send control current of motor (0x201, 0x202, 0x203, 0x204)
  * @param[in]      motor1: (0x201) 3508 motor control current, range [-16384,16384] 
  * @param[in]      motor2: (0x202) 3508 motor control current, range [-16384,16384] 
  * @param[in]      motor3: (0x203) 3508 motor control current, range [-16384,16384] 
  * @param[in]      motor4: (0x204) 3508 motor control current, range [-16384,16384] 
  * @retval         none
  */
void CAN_cmd_chassis(int16_t M1, int16_t M2, int16_t M3, int16_t M4)
{
    uint32_t send_mail_box;
    chassis_tx_message.StdId=CAN_CHASSIS_ALL_ID;
    chassis_tx_message.IDE=CAN_ID_STD;
    chassis_tx_message.RTR=CAN_RTR_DATA;
    chassis_tx_message.DLC=0x08;
    chassis_can_send_data[0]=M1>>8;
    chassis_can_send_data[1]=M1;
    chassis_can_send_data[2]=M2>>8;
    chassis_can_send_data[3]=M2;
    chassis_can_send_data[4]=M3>>8;
    chassis_can_send_data[5]=M3;
    chassis_can_send_data[6]=M4>>8;
    chassis_can_send_data[7]=M4;
    
    HAL_CAN_AddTxMessage(&hcan1,&chassis_tx_message,chassis_can_send_data,&send_mail_box);
}

这个函数几乎每个例程里面都有,笔者也是直接拿过来用

  1. CAN接收到数据后就会产生中断,进入中断回调函数,这个函数是需要我们自己编写的,我们需要在这里处理拼接接收到的数据,然后储存起来

uint8_t rx_data[8]; //用于接收电机原始数据
motor_measure_t motor_chassis[4]; //声明一个结构体数组来储存处理后电机的数据
//用来拼接电机数据
#define get_motor_measure(ptr,data)\
{\
    (ptr)->angle_value=(uint16_t)((data)[0]<<8|(data)[1]);\
    (ptr)->speed_rpm=(uint16_t)((data)[2]<<8|(data)[3]);\
    (ptr)->real_current=(uint16_t)((data)[4]<<8|(data)[5]);\
    (ptr)->temperate=(data)[6];\
    (ptr)->real_angle=(ptr)->angle_value/8192.0f*360.0f;\
}

void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
    
    CAN_RxHeaderTypeDef rx_header;
    HAL_CAN_GetRxMessage(&hcan1, CAN_RX_FIFO0, &rx_header, rx_data);
    switch(rx_header.StdId)
    {
        case motor1:
        case motor2:
        case motor3:
        case motor4:
        {
            static uint8_t i = 0;
            i = rx_header.StdId - motor1;
            get_motor_measure(&motor_chassis[i],rx_data);
            break;
        }
        
        default:
        {
            break;
        }
    }

}

六、现在我们可以开始写main函数了(直接上代码)

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "can.h"
#include "dma.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "pid.h" 
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
#define unit_speed 1000/660.0  //这里改最大速度只需要改前面的1000就可以了

DBUS remoter;
uint8_t dbus_resive[18];
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
extern motor_measure_t motor_chassis[4];
PidTypeDef motor_pid;
fp32 pid_motor[3]={3.0,0.1,0};        // 这三个参数也是参考了其他大佬的
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan);
void CAN_cmd_chassis(int16_t M1, int16_t M2, int16_t M3, int16_t M4);
fp32 PID_Calc(PidTypeDef *pid,fp32 ref,fp32 set);
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  signed int set_speed;
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_CAN1_Init();
  MX_USART1_UART_Init();
  MX_USART6_UART_Init();
  /* USER CODE BEGIN 2 */
  HAL_UART_Receive_DMA(&huart1,dbus_resive,18);//初始化DMA
  __HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//IDLE 中断使能
  can1_start();
  PID_init(&motor_pid,PID_POSITION,pid_motor,16000,16000);  //PID初始化

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
      set_speed = remoter.rc.ch1 * unit_speed;
       PID_Calc(&motor_pid,motor_chassis[1].speed_rpm,set_speed);
      CAN_cmd_chassis(motor_pid.out,motor_pid.out,motor_pid.out,motor_pid.out);
      HAL_Delay(10);

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 6;
  RCC_OscInitStruct.PLL.PLLN = 168;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle) 
{  
    remoter.rc.ch0 = (dbus_resive[0]| (dbus_resive[1] << 8)) & 0x07ff;          
    remoter.rc.ch0 -= 1024;
    remoter.rc.ch1 = ((dbus_resive[1] >> 3) | (dbus_resive[2] << 5)) & 0x07ff;       
    remoter.rc.ch1 -= 1024;
    remoter.rc.ch2 = ((dbus_resive[2] >> 6) | (dbus_resive[3] << 2) | (dbus_resive[4] << 10)) & 0x07ff;          
    remoter.rc.ch2 -= 1024;
    remoter.rc.ch3 = ((dbus_resive[4] >> 1) | (dbus_resive[5] << 7)) & 0x07ff;           
    remoter.rc.ch3 -= 1024;
    remoter.rc.s1  = ((dbus_resive[5] >> 4)& 0x000C) >> 2;                           
    remoter.rc.s2  = ((dbus_resive[5] >> 4)& 0x0003);  
 
    remoter.rc.sw = dbus_resive[16]|(dbus_resive[17]<<8);
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

七,仿真

测试一下我们的代码

八,

到这功能就算完成啦。要完全看懂这些的也是需要有一定相关知识基础的,这篇主要写的就是怎么用这些函数,至于为什么要这么写或者说为什么要这么用就没有详细说,如果大家想学习的可以去网上搜,相关的资料有很多,有些地方笔者也为大家贴出来了。如果大家需要什么相关资料也可找笔者要哦,祝大家生活愉快。

“且将新火试新茶,诗酒趁年华”

-------------苏轼

本文标签: 电机HAL