【计算机网络实验 第一卷:使劲学 加相关网络知识---随着深入会不断补充】

编程知识 更新时间:2023-04-20 12:08:20

计算机网络实验

验证性实验

ps:文档太大,很无奈,不好改,部分自己感悟的知识点放在第三卷:https://blog.csdn/qq_45790833/article/details/122205758?spm=1001.2014.3001.5501

ipconfig

实作一

C:\Users\本机>ipconfig/all

Windows IP 配置

主机名 . . . . . . . . . . . . . : xxx本机
主 DNS 后缀 . . . . . . . . . . . :
节点类型 . . . . . . . . . . . . : 混合
IP 路由已启用 . . . . . . . . . . : 否
WINS 代理已启用 . . . . . . . . . : 否

以太网适配器 以太网 2:

媒体状态 . . . . . . . . . . . . : 媒体已断开连接
连接特定的 DNS 后缀 . . . . . . . :
描述. . . . . . . . . . . . . . . : Sangfor SSL VPN CS Support System VNIC
物理地址. . . . . . . . . . . . . : xx-xx-xx-xx-xx-xx mac地址
DHCP 已启用 . . . . . . . . . . . : 否
自动配置已启用. . . . . . . . . . : 是

以太网适配器 VirtualBox Host-Only Network:

连接特定的 DNS 后缀 . . . . . . . :
描述. . . . . . . . . . . . . . . : VirtualBox Host-Only Ethernet Adapter
物理地址. . . . . . . . . . . . . : 0A-xx-xx-00-xx-xx mac地址

无线局域网适配器 本地连接* 3:

无线局域网适配器 本地连接* 12:

以太网适配器 VMware Network Adapter VMnet1:

以太网适配器 VMware Network Adapter VMnet8:

无线局域网适配器 WLAN:

连接特定的 DNS 后缀 . . . . . . . :
描述. . . . . . . . . . . . . .
物理地址. . . . . . . . . . . . . :
DHCP 已启用 . . . . . . . . . . . : 是
自动配置已启用. . . . . . . . . . : 是
IPv6 地址 . . . . . . . . . . . . :
临时 IPv6 地址. . . . . . . . . . :
本地链接 IPv6 地址. . . . . . . . :
IPv4 地址 . . . . . . . . . . . . :
子网掩码 . . . . . . . . . . . . :

以太网适配器 蓝牙网络连接:

媒体状态 . . . . . . . . . . . . : 媒体已断开连接
连接特定的 DNS 后缀 . . . . . . . :
用户电脑名称上的DNS是用户加入有DNS服务器上的域后电脑自动加上去的,DNS后缀就是你们现在连接的这个网络的DNS
物理地址>会分配一个物理地址
DHCP 已启用 DHCP( 动**态主机配置协议 )**是一个局域网的网络协议。. 指的是由服务器控制一段IP地址范围,客户机登录服务器时就可以自动获得服务器分配的IP地址和子网掩码。. 默认情况下,DHCP作为Windows Server的一个服务组件不会被系统自动安装,还需要管理员手动安装并进行必要的配置

实作二

问题

你的计算机和旁边的计算机是否处于同一子网,为什么?

如果同时接入校园网是同一子网,把两台电脑的IP地址与子网掩码转成二进制,然后相应位进行相与运算,得出的结果相同(结果再转成10进制更方便判断),就是属于同一子网。

ping

实作一

C:\Users\GLENOVO>ping www.baidu

正在 Ping www.a.shifen [14.215.177.38] 具有 32 字节的数据:
来自 14.215.177.38 的回复: 字节=32 时间=78ms TTL=52
来自 14.215.177.38 的回复: 字节=32 时间=108ms TTL=52
来自 14.215.177.38 的回复: 字节=32 时间=284ms TTL=52
来自 14.215.177.38 的回复: 字节=32 时间=227ms TTL=52

14.215.177.38 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 78ms,最长 = 284ms,平均 = 174ms

TTL

TTL是 Time To Live的缩写,该字段指定IP包被路由器丢弃之前允许通过的最大网段数量。TTL是IPv4报头的一个8 bit字段。TTL的域值通过一个路由器时递减1;当TTL 递减到0时,信息包被路由器抛弃。

注意:TTL与DNS TTL有区别。二者都是生存时间,前者指ICMP包的转发次数(跳数),后者指域名解析信息在DNS中的存在时间。

实作二

C:\Users\GLENOVO>ping/?

用法: ping [-t] [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS]
[-r count] [-s count] [[-j host-list] | [-k host-list]]
[-w timeout] [-R] [-S srcaddr] [-c compartment] [-p]
[-4] [-6] target_name

选项:
-t Ping 指定的主机,直到停止。
若要查看统计信息并继续操作,请键入 Ctrl+Break;
若要停止,请键入 Ctrl+C。
-a 将地址解析为主机名。
-n count 要发送的回显请求数。
-l size 发送缓冲区大小。
-f 在数据包中设置“不分段”标记(仅适用于 IPv4)。
-i TTL 生存时间。
-v TOS 服务类型(仅适用于 IPv4。该设置已被弃用,
对 IP 标头中的服务类型字段没有任何
影响)。
-r count 记录计数跃点的路由(仅适用于 IPv4)。
-s count 计数跃点的时间戳(仅适用于 IPv4)。
-j host-list 与主机列表一起使用的松散源路由(仅适用于 IPv4)。
-k host-list 与主机列表一起使用的严格源路由(仅适用于 IPv4)。
-w timeout 等待每次回复的超时时间(毫秒)。
-R 同样使用路由标头测试反向路由(仅适用于 IPv6)。
根据 RFC 5095,已弃用此路由标头。
如果使用此标头,某些系统可能丢弃
回显请求。
-S srcaddr 要使用的源地址。
-c compartment 路由隔离舱标识符。
-p Ping Hyper-V 网络虚拟化提供程序地址。
-4 强制使用 IPv4。
-6 强制使用 IPv6。

TroubleShooting

假设你不能 ping 通某计算机或 IP,但你确定该计算机和你之间的网络是连通的,那么可能的原因是什么?该如何处理能保证 ping 通?

由两台计算机建立通信的过程分析,测试本身,检查本机 TCP/IP 配置即网卡状态等,没问题后依次测试到与某台计算机的通信,正常则子网正常。再检查网关,最后连接子网外的ip,不通则是网关外的问题。

TroubleShooting

假设在秘籍中进行的网络排查中,ping 百度的 IP 即 ping 14.215.177.39 没问题,但 ping 百度的域名即 ping www.baidu 不行,那么可能的原因是什么?如何进行验证和解决?

明显是域名解析出问题,清空DNS缓存,或者联系运营商,也可能是其他一些问题。具体分析即可。

tracert

实作一

C:\Users\GLENOVO>tracert www.baidu

通过最多 30 个跃点跟踪
到 www.a.shifen [14.215.177.39] 的路由:

1 5 ms 7 ms 5 ms 192.168.43.1
2 414 ms 100 ms 104 ms 10.142.2.113
3 * * * 请求超时。
4 186 ms 100 ms 100 ms 115.169.18.170
5 161 ms 99 ms 101 ms 222.176.33.165
6 166 ms * 67 ms 222.176.9.185
7 * * * 请求超时。
8 182 ms 101 ms 101 ms 113.96.4.98
9 185 ms 88 ms 102 ms 90.96.135.219.broad.fs.gd.dynamic.163data [219.135.96.90]
10 74 ms 108 ms 203 ms 14.215.32.102
11 * * * 请求超时。
12 * * * 请求超时。
13 244 ms 99 ms 99 ms 14.215.177.39

跟踪完成。

可通过网站 http://ip 查看这些节点位于何处,是哪个公司的,大致清楚本机到百度服务器之间的路径。

实作二

问题一

tracert 能告诉我们路径上的节点以及大致的延迟等信息,那么它背后的原理是什么?本问题可结合第二部分的 Wireshark 实验进行验证。

过向目标发送不同IP生存时间 (TTL) 值的“Internet控制消息协议(ICMP)”回应数据包,然后进行诊断,TTL变成0后,路由器应该发回信息。TTL最初设为1,每次增1,然后直到找到或者TTL达到最大,得到整个路由路径。

问题二

在以上两个实作中,如果你留意路径中的节点,你会发现无论是访问百度还是棋歌教学网,路径中的第一跳都是相同的,甚至你应该发现似乎前几个节点都是相同的,你的解释是什么?

都要出网关

问题三

在追踪过程中,你可能会看到路径中某些节点显示为 * 号,这是发生了什么?

没有反馈信息应该是隐藏了

ARP

✍ ARP(Address Resolution Protocol)即地址解析协议,是用于根据给定网络层地址即 IP 地址,查找并得到其对应的数据链路层地址即 MAC地址的协议。 ARP 协议定义在 1982 年的 RFC 826。

实作一

运行 arp -a 命令查看当前的 arp 缓存, 请留意缓存了些什么。

然后 ping 一下你旁边的计算机 IP(注意,需保证该计算机的 IP 没有出现在 arp 缓存中,或者使用 arp -d * 先删除全部缓存),再次查看缓存,你会发现一些改变,请作出解释。

很明显,由于没有arp缓存,则需要重新寻找相关的mac地址,只知道ip地址,然后需要知道mac地址,则需要arp包来得到对方mac回复

实作二

请使用 arp /? 命令了解该命令的各种选项。

实作三

一般而言,arp 缓存里常常会有网关的缓存,并且是动态类型的。

假设当前网关的 IP 地址是 192.168.0.1,MAC 地址是 5c-d9-98-f1-89-64,请使用 arp -s 192.168.0.1 5c-d9-98-f1-89-64 命令设置其为静态类型的。

🗣 TroubleShooting

你可能会在实作三的操作中得到 “ARP 项添加失败: 请求的操作需要提升” 这样的信息,表示命令没能执行成功,你该如何解决?
netsh i i show in找到指定Idx,然后netsh -c “i i” add neighbors 【Idx】 【IP地址】【mac地址】修改指定IP的mac

✎ 问题

在实作三中,为何缓存中常常有网关的信息?
因为缓存本身记录着你有访问过的pc 网卡MAC物理地址。

我们将网关或其它计算机的 arp 信息设置为静态有什么优缺点?
静态分配IP地址是指给每一台计算机都分配一个固定的IP地址,优点是便于管理,特别是在根据IP地址限制网络流量的局域网中,以固定的IP地址或IP地址分组产生的流量为依据管理,可以免除在按用户方式计费时用户每次上网都必须进行的身份认证的繁琐过程,同时也避免了用户经常忘记密码的尴尬。静态分配IP地址的弱点是合法用户分配的地址可能被非法盗用,不仅对网络的正常使用造成影响,同时由于被盗用的地址往往具有较高的权限,因而也容易给合法用户造成损失和潜在的安全隐患。

课外浏览
ARP 协议在制定之初是没有考虑安全性的,导致现在广泛提及的"网络扫描"、“内网渗透”、“中间人拦截”、“局域网流控”、"流量欺骗"等等其实都跟 ARP 欺骗有关。

需要对此进行防范,特别是从事对安全性要求较高的工作。

那么什么是 ARP 欺骗,发生ARP 欺骗后会有什么后果,我们该如何进行防范?这里给出维基百科,其它的请查阅相关资料了解。

DHCP

✍ DHCP(Dynamic Host Configuration Protocol)即动态主机配置协议,是一个用于 IP 网络的网络协议,位于 OSI 模型的应用层,使用 UDP 协议工作,主要有两个用途:

用于内部网或网络服务供应商自动分配 IP 地址给用户
用于内部网管理员对所有电脑作中央管理
简单的说,DHCP 可以让计算机自动获取/释放网络配置。

实作一

一般地,我们自动获取的网络配置信息包括:IP 地址、子网掩码、网关 IP 以及 DNS 服务器 IP 等。使用 ipconfig/release 命令释放自动获取的网络配置,并用 ipconfig/renew 命令重新获取,了解 DHCP 工作过程和原理。

🗣 TroubleShooting

如果你没能成功的释放,请思考有哪些可能的原因并着手进行解决?
可能是电脑配置出现问题,可以从命令,电脑实时配置分析。在失去自动获取的网络配置信息后,会出现断网的情况,需要renew重新获取网络配置。

✎ 问题

在Windows系统下,如果由于某种原因计算机不能获取 DHCP 服务器的配置数据,那么Windows将会根据某种算法自动配置为 169.254.x.x 这样的 IP 地址。显然,这样的 IP 以及相关的配置信息是不能让我们真正接入 Internet 的,为什么?既然不能接入 Internet,那么Winodws系统采用这样的方案有什么意义?
因为自动配置的IP地址和信息只是短暂性的解决计算机不能获取 DHCP 服务器的配置数据的问题,要真正的接入Internet还是得本身计算机的正确IP地址。意义是假如某天因 DHCP 服务器问题从而不能获得网络配置,那么我们可以查看隔壁教室计算机的配置信息来手动进行网络配置,从而使该计算机能够接入 Internet
此外这样设计应该也便于网络故障排查。

📬 秘籍

在我校不少地方如教室,计算机都采用了 DHCP 来获得网络配置。假如某天因 DHCP 服务器问题从而不能获得网络配置,那么我们可以查看隔壁教室计算机的配置信息来手动进行网络配置,从而使该计算机能够接入 Internet。

经常的,在一个固定地方的网络配置我都喜欢采用 静态/手动配置,而不是动态 DHCP 来进行。你能想到是什么原因吗?

比较稳定,不会因为DHCP 服务器影响自己的电脑运行。

课外浏览
DHCP也是一个没有考虑安全性的并且使用广泛的一个协议。比如,因为 DHCP 维护的地址池是有限的,那么我可以不停的发出 DHCP 请求,从而导致 DHCP 地址耗尽。然后我自己再运行一个 DHCP 服务器来提供虚假的网络信息,特别是伪造的网关和 DNS 信息。请查阅相关资料了解。

netstat

✍ 无论是使用 TCP 还是 UDP,任何一个网络服务都与特定的端口(Port Number)关联在一起。因此,每个端口都对应于某个通信协议/服务。

netstat(Network Statistics)是在内核中访问网络连接状态及其相关信息的命令行程序,可以显示路由表、实际的网络连接和网络接口设备的状态信息,以及与 IP、TCP、UDP 和 ICMP 协议相关的统计数据,一般用于检验本机各端口的网络服务运行状况。

实作一

Windows 系统将一些常用的端口与服务记录在 C:\WINDOWS\system32\drivers\etc\services 文件中,请查看该文件了解常用的端口号分配。

实作二

使用 netstat -an 命令,查看计算机当前的网络连接状况。更多的 netstat 命令选项,可参考上面链接 。

📬 秘籍

打开的计算机端口,就是向 Internet 打开的一个通道。通过 netstat 命令,我们可以了解当前计算机哪些端口是打开的,从而找出一些恶意后台程序,分析其所作所为,并且可以进一步将相关端口关闭,降低安全风险。

这样就不用总是无脑关机啦

DNS

✍ DNS(Domain Name System)即域名系统,是互联网的一项服务。它作为将域名和 IP 地址相互映射的一个分布式数据库,能够使人更方便地访问互联网。DNS 使用 TCP 和 UDP 的 53 号端口。

实作一

Windows 系统将一些固定的/静态的 DNS 信息记录在 C:\WINDOWS\system32\drivers\etc\hosts 文件中,如我们常用的 localhost 就对应 127.0.0.1 。请查看该文件看看有什么记录在该文件中。

实作二

解析过的 DNS 记录将会被缓存,以利于加快解析速度。请使用 ipconfig /displaydns 命令查看。我们也可以使用 ipconfig /flushdns 命令来清除所有的 DNS 缓存。

实作三

使用 nslookup qige.io 命令,将使用默认的 DNS 服务器查询该域名。当然你也可以指定使用 CloudFlare(1.1.1.1)或 Google(8.8.8.8) 的全球 DNS 服务器来解析,如:nslookup qige.io 8.8.8.8,当然,由于你懂的原因,这不一定会得到正确的答案。

📬 秘籍

当我们使用浏览器上网时,或多或少的会看到一些广告。某些网站的广告是非常没有节操的,所以我们一般可以通过安装浏览器插件如 AdGuard、AdBlocker 等来拦截和过滤。

这种方法简单方便有效,不过有一定安全或隐私问题,因为该插件实时知道你访问的 URL。

假设不使用这种第三方的插件,希望自己完全控制,那么就请考虑在我们前面提到的 hosts 文件中添加 DNS 记录。有自愿者时时在维护全球正确的 DNS 记录文件

这样安全性会高一些。

🗣 TroubleShooting

上面秘籍中我们提到了使用插件或自己修改 hosts 文件来屏蔽广告,思考一下这种方式为何能过滤广告?如果某些广告拦截失效,那么是什么原因?你应该怎样进行分析从而能够成功屏蔽它?

hosts相当于一个字典,如果查到输入的域名在hosts中,则会先调用其对应的IP,而不通过DNS,因此可以通过手动添加修改(错误的) <ip-网址 >以达到(屏蔽某网站的)目的

课外浏览
我们常说的 DNS 欺骗、DNS 劫持、DNS 毒化等都与 DNS 的安全性相关。请查阅相关资料了解其发生原因以及如何进行防范。

另外考虑去一些大的 Internet 服务公司购买一个属于自己的域名,构建自己的 Internet 空间。
无法买断,可以续费。

cache

✍ cache 即缓存,是 IT 领域一个重要的技术。我们此处提到的 cache 主要是浏览器缓存。

浏览器缓存是根据 HTTP 报文的缓存标识进行的,是性能优化中简单高效的一种优化方式了。一个优秀的缓存策略可以缩短网页请求资源的距离,减少延迟,并且由于缓存文件可以重复利用,还可以减少带宽,降低网络负荷。

实作一

打开 Chrome 或 Firefox 浏览器,访问 https://qige.io ,接下来敲 F12 键 或 Ctrl + Shift + I 组合键打开开发者工具,选择 Network 面板后刷新页面,你会在开发者工具底部看到加载该页面花费的时间。请进一步查看哪些文件被 cache了,哪些没有。

实作二

接下来仍在 Network 面板,选择 Disable cache 选项框,表明当前不使用 cache,页面数据全部来自于 Internet,刷新页面,再次在开发者工具底部查看加载该页面花费的时间。你可比对与有 cache 时的加载速度差异。

好家伙明显变慢

📬 秘籍

你的计算机可能还在使用 XX 管家,XX 卫士之类的垃圾软件,那么它可能就会在某些时候提示你计算机的垃圾文件有多少多少,请清理(其实是它本身应该被清理!)之类的弹窗。如果你查看一下它判断的所谓垃圾文件,你会发现大多都是浏览器的缓存,而你已经明白了这些缓存文件的作用。所以,清理吗?

选择性清理

Wireshark 实验

数据链路层

实作一 熟悉 Ethernet 帧结构

数据链路层有:

ppp点对点协议、Ethernet等协议

Ethernet帧格式包含目的MAC,源MAC,类型,数据,校验字段。就这一帧来说

有destinnation:目的mac

source:源mac

类型:IPV4

Padding:填充数据
在这里插入图片描述

以太网帧大小必须在641518字节(不包含前导码和定界符),即包括目的地址(6B)、源地址(6B)、类型(2B)、数据、FCS(4B)在内,其中数据段大小在461500字节之间。

问题 Wireshark 展现给我们的帧中没有校验字段

帧格式中时包含校验字段的,Wireshark抓包自动将校验字段给过滤掉了

实作二 了解子网内/外通信时的 MAC 地址

  1. ping 你旁边的计算机(同一子网),同时用 Wireshark 抓这些包(可使用 icmp 关键字进行过滤以利于分析),记录一下发出帧的目的 MAC 地址以及返回帧的源 MAC 地址是多少?这个 MAC 地址是谁的?

    很明显,自己发出的携带的是自己的mac地址,如果不知道对方,则需要使用arp得到mac,然后嘞,出去的自己为源mac,回来自己变成目的mac,源mac是自己所要的其他主机(大概率是交换机等的mac)的mac

  2. 然后 ping qige.io (或者本子网外的主机都可以),同时用 Wireshark 抓这些包(可 icmp 过滤),记录一下发出帧的目的 MAC 地址以及返回帧的源 MAC 地址是多少?这个 MAC 地址是谁的?

    出去的自己为源mac,回来自己变成目的mac
    ps:通过mac可以看出生产厂商,当然,不同的mac格式对应了不同的请求。对应广播,组播等等。。。

  3. 再次 ping www.cqjtu.edu (或者本子网外的主机都可以),同时用 Wireshark 抓这些包(可 icmp 过滤),记录一下发出帧的目的 MAC 地址以及返回帧的源 MAC 地址又是多少?这个 MAC 地址又是谁的?
    出去的自己为源mac,回来自己变成目的mac,目的地址和源地址交换了。

✎ 问题

通过以上的实验,你会发现:

访问本子网的计算机时,目的 MAC 就是该主机的
访问非本子网的计算机时,目的 MAC 是网关的
请问原因是什么?

原因是网关作为一个子网的出入口,当一个子网想要和另外一个子网进行通信,就必须经过网关,才能够实现通信,对于同一子网中的终端进行通信,它们只要在子网中找到对应的目的地址就可以实现通信,不需要经过网关。

实作三 掌握 ARP 解析过程

  1. 为防止干扰,先使用 arp -d * 命令清空 arp 缓存

一般涉及到这种操作都需要提高权限,可能需要在有管理员权限的cmd窗口下进行,才能够成功。

  1. ping 你旁边的计算机(同一子网),同时用 Wireshark 抓这些包(可 arp 过滤),查看 ARP 请求的格式以及请求的内容,注意观察该请求的目的 MAC 地址是什么。再查看一下该请求的回应,注意观察该回应的源 MAC 和目的 MAC 地址是什么。

  2. 再次使用 arp -d * 命令清空 arp 缓存

  3. 然后 ping qige.io (或者本子网外的主机都可以),同时用 Wireshark 抓这些包(可 arp 过滤)。查看这次 ARP 请求的是什么,注意观察该请求是谁在回应。

✎ 问题

通过以上的实验,你应该会发现,

ARP 请求都是使用广播方式发送的
如果访问的是本子网的 IP,那么 ARP 解析将直接得到该 IP 对应的 MAC;如果访问的非本子网的 IP, 那么 ARP 解析将得到网关的 MAC。
请问为什么?

ARP解析是先看arp表中是否有目的地址,如果有就不需要再次建立联系了,可以获取到目的MAC。如果没有就需要发送ARP请求,来获取目的MAC。如果目的地址是属于同一个子网,则不行要通过网关就能够进行通信,而不在同一个子网中就需要通过网关才能够建立联系

就是说出了咱们子网的才需要网关大哥上场。

网络层

实作一 熟悉 IP 包结构

使用 Wireshark 任意进行抓包(可用 ip 过滤),熟悉 IP 包的结构,如:版本、头部长度、总长度、TTL、协议类型等字段。

IP包的格式中,第一个是版本,如果是4,就表示是IPv4,同理可知是6就表示是IPv6。第二个是头部长度,一般情况都是为5(表示包的头部有5行,一共20个字节)。第三个是服务类型,一般是0。接下来是总长度,TTL,协议类型,头部校验,源IP,目的IP。

✎ 问题

为提高效率,我们应该让 IP 的头部尽可能的精简。但在如此珍贵的 IP 头部你会发现既有头部长度字段,也有总长度字段。请问为什么?

为了能精确定位到数据所在的位置。头部长度是来表明该包头部的长度,头部有一行是可选的,可以要,也可以不要。总长度是为了接收方的网络层了解到传输的数据包含哪些,如果没有该部分,当数据链路层在传输时,对数据进行了填充,接收方对应的网络层不会把填充的部分给去掉。

实作二 IP 包的分段与重组

根据规定,一个 IP 包最大可以有 64K 字节。但由于 Ethernet 帧的限制,当 IP 包的数据超过 1500 字节时就会被发送方的数据链路层分段,然后在接收方的网络层重组。

此处分段标志是0x2000,前面两个是保留位,后面其中一位是DF(不分段位),0表示允许分段,1则表示不允许分段,还有一位就是MF(更多段位),0表示后面没有包,1则表示后面还有其他包。偏移量是用来标识数据包在数据流中的位置,也可以理解为同一个IP标识发送多个数据包时的顺序号。图片中偏移量为0,表明该包位于数据流的0号位置。每个包的大小是用Total Length来表示,它包含IP包头部及数据两个部分。

缺省的,ping 命令只会向对方发送 32 个字节的数据。我们可以使用 ping 202.202.240.16 -l 2000 命令指定要发送的数据长度。此时使用 Wireshark 抓包(用 ip.addr == 202.202.240.16 进行过滤),了解 IP 包如何进行分段,如:分段标志、偏移量以及每个包的大小等

✎ 问题

*分段与重组是一个耗费资源的操作,特别是当分段由传送路径上的节点即路由器来完成的时候,*所以 IPv6 已经不允许分段了。那么 IPv6 中,如果路由器遇到了一个大数据包该怎么办?

转发到支持该数据传输的路由上或者丢弃。

实作三 考察 TTL 事件

在 IP 包头中有一个 TTL 字段用来限定该包可以在 Internet上传输多少跳(hops),一般该值设置为 64、128等。

在验证性实验部分我们使用了 tracert 命令进行路由追踪。其原理是主动设置 IP 包的 TTL 值,从 1 开始逐渐增加,直至到达最终目的主机。

请使用 tracert www.baidu 命令进行追踪,此时使用 Wireshark 抓包(用 icmp 过滤),分析每个发送包的 TTL 是如何进行改变的,从而理解路由追踪原理。

✎ 问题

在 IPv4 中,TTL 虽然定义为生命期即 Time To Live,但现实中我们都以跳数/节点数进行设置。如果你收到一个包,其 TTL 的值为 50,那么可以推断这个包从源点到你之间有多少跳?

一般TTL的设置为与其最靠进的2的n次幂。64-50=14

传输层

实作一 熟悉 TCP 和 UDP 段结构

用 Wireshark 任意抓包(可用 tcp 过滤),熟悉 TCP 段的结构,如:源端口、目的端口、序列号、确认号、各种标志位等字段。

 源端口:57454

目的端口:443

序列号:1

确认号:1

标志字段(较重要的标志位):URG(紧急位)、SYN(同步位)、ACK(确认位)、FIN(结束位)、RST(重置位)

Window size(窗口尺寸/缓存)

checksum(校验和)


用 Wireshark 任意抓包(可用 udp 过滤),熟悉 UDP 段的结构,如:源端口、目的端口、长度等。

源端口:10158
目的端口:80
长度:16
checksum(校验和):一般情况都为0

✎ 问题

由上大家可以看到 UDP 的头部比 TCP 简单得多,但两者都有源和目的端口号。请问源和目的端口号用来干什么?

应用层会需要开放端口进行程序的信息交互。源端口来表示发送终端的某个应用程序,目的端口来表示接收终端的某个应用程序。端口号就是来标识终端的应用程序,从而实现应用程序之间的通信。

实作二 分析 TCP 建立和释放连接

打开浏览器访问 qige.io 网站,用 Wireshark 抓包(可用 tcp 过滤后再使用加上 Follow TCP Stream),不要立即停止 Wireshark 捕获,待页面显示完毕后再多等一段时间使得能够捕获释放连接的包。

请在你捕获的包中找到三次握手建立连接的包,并说明为何它们是用于建立连接的,有什么特征。

第一次握手,同步位(SYN)是1,确认位(ACK)是0
第二次握手,同步位(SYN)是1,确认位(ACK)是1
第三次握手,同步位(SYN)是0,确认位(ACK)是1

请在你捕获的包中找到四次挥手释放连接的包,并说明为何它们是用于释放连接的,有什么特征。

FIN(结束位),它的值为1,表示断开连接。

✎ 问题一

去掉 Follow TCP Stream,即不跟踪一个 TCP 流,你可能会看到访问 qige.io 时我们建立的连接有多个。请思考为什么会有多个连接?作用是什么?

它们之间的连接是属于短连接,一旦数据发送完成后,就会断开连接。虽然,断开连接,但是页面还是存在,由于页面已经被缓存下来。一旦需要重新进行发送数据,就要再次进行连接。这样的连接,是为了实现多个用户进行访问,对业务频率不高的场合,节省通道的使用,不让其长期占用通道。

✎ 问题二

我们上面提到了释放连接需要四次挥手,有时你可能会抓到只有三次挥手。原因是什么?

将中间的两次合成为一次。例如:客户端向服务端发送断开连接的请求为第一次挥手,服务端向客户端回复同意断开连接为第二次挥手,接着服务端向客户端发送断开连接的请求为第三次挥手,客户端向服务端回复同意断开连接为第四次挥手。三次挥手是将服务器向客户端发送断开连接和回复同意断开连接合成一次挥手,其他两次挥手不变。

应用层

应用层的协议非常的多,我们只对 DNS 和 HTTP 进行相关的分析。

实作一 了解 DNS 解析

先使用 ipconfig /flushdns 命令清除缓存,再使用 nslookup qige.io 命令进行解析,同时用 Wireshark 任意抓包(可用 dns 过滤)。

你应该可以看到当前计算机使用 UDP,向默认的 DNS 服务器的 53 号端口发出了查询请求,而 DNS 服务器的 53 号端口返回了结果。
可了解一下 DNS 查询和应答的相关字段的含义

16位的标志位

QR:查询/应答标志。0表示这是一个查询报文,1表示这是一个应答报文

opcode,定义查询和应答的类型。0表示标准查询,1表示反向查询(由IP地址获得主机域名),2表示请求服务器状态

AA,授权应答标志,仅由应答报文使用。1表示域名服务器是授权服务器

TC,截断标志,仅当DNS报文使用UDP服务时使用。因为UDP数据报有长度限制,所以过长的DNS报文将被截断。1表示DNS报文超过512字节,并被截断

RD,递归查询标志。1表示执行递归查询,即如果目标DNS服务器无法解析某个主机名,则它将向其他DNS服务器继续查询,如此递归,直到获得结果并把该结果返回给客户端。0表示执行迭代查询,即如果目标DNS服务器无法解析某个主机名,则它将自己知道的其他DNS服务器的IP地址返回给客户端,以供客户端参考

RA,允许递归标志。仅由应答报文使用,1表示DNS服务器支持递归查询

zero,这3位未用,必须设置为0

rcode,4位返回码,表示应答的状态。常用值有0(无错误)和3(域名不存在)

应答字段

域名,类型,生命周期,数据长度,地址

✎ 问题

你可能会发现对同一个站点,我们发出的 DNS 解析请求不止一个,思考一下是什么原因?

DNS不止一个的原因可能是DNS解析过程是先从浏览器的DNS缓存中检查是否有这个网址的映射关系,如果有,就返回IP,完成域名解析;如果没有,操作系统会先检查自己本地的hosts文件是否有这个网址的映射关系,如果有,就返回IP,完成域名解析;如果还没有,电脑就要向本地DNS服务器发起请求查询域名;本地DNS服务器拿到请求后,先检查一下自己的缓存中有没有这个地址,有的话直接返回;没有的话本地DNS服务器会从配置文件中读取13个根DNS服务器的地址,然后向其中一台发起请求;直到获得对应的IP为止。

实作二 了解 HTTP 的请求和应答

打开浏览器访问 qige.io 网站,用 Wireshark 抓包(可用http 过滤再加上 Follow TCP Stream),不要立即停止 Wireshark 捕获,待页面显示完毕后再多等一段时间以将释放连接的包捕获。
请在你捕获的包中找到 HTTP 请求包,查看请求使用的什么命令,如:GET, POST。并仔细了解请求的头部有哪些字段及其意义。

Accept:告诉WEB服务器自己接受什么介质类型

Content-Type:WEB 服务器告诉浏览器自己响应的对象的类型

Content-Length:WEB 服务器告诉浏览器自己响应的对象的长度

Cache-Control:用来指示缓存系统(服务器上的,或者浏览器上的)应该怎样处理缓存

Host:客户端指定自己想访问的WEB服务器的域名/IP 地址和端口号

POST:请求的方式,其中包括URI和版本

请在你捕获的包中找到 HTTP 应答包,查看应答的代码是什么,如:200, 304, 404 等。并仔细了解应答的头部有哪些字段及其意义。

200说明成功ok.

Server:服务器通过这个头告诉浏览器服务器的类型

Transfer-Encoding:告诉浏览器数据的传送格式

Date:当前的GMT时间

Content- Type:表示后面的文档属于什么MIME类型

Cache-Control:指定请求和响应遵循的缓存机制

✍ 建议:

HTTP 请求和应答的头部字段值得大家认真的学习,因为基于 Web 的编程中我们将会大量使用。如:将用户认证的令牌信息放到头部,或者把 cookie 放到头部等。

✎ 问题

刷新一次 qige.io 网站的页面同时进行抓包,你会发现不少的 304 代码的应答,这是所请求的对象没有更改的意思,让浏览器使用本地缓存的内容即可。那么服务器为什么会回答 304 应答而不是常见的 200 应答?

浏览器中的缓存,可以直接在缓存区获取到需要的内容,不需要服务器在回复对应的内容,可以减少服务器的一些工作,减小开销。采用200应答就是要完全的将内容发送给客服端,这个会增加服务器的一些开销等。

Cisco Packet Tracer 实验

一些概念

VLSM:VLSM(可变长子网掩码) 是为了有效的使用无类别域间路由(CIDR)和路由汇聚(route summary)来控制路由表的大小,它是网络管理员常用的IP寻址技术,VLSM就是其中的常用方式,可以对子网进行层次化编址,以便最有效的利用现有的地址空间。

CIDR:将 IP 地址分为 A 类、B 类、C 类后,会造成 IP 地址的部分浪费。例如,一些连续的 IP 地址,一部分属于 A 类地址,另一部分属于 B 类地址。为了使这些地址聚合以方便管理,出现了 CIDR(无类域间路由)。
无类域间路由(Classless Inter-Domain Routing,CIDR)可以将路由集中起来,在路由表中更灵活地定义地址。它不区分 A 类、B 类、C 类地址,而是使用 CIDR 前缀的值指定地址中作为网络 ID 的位数。
这个前缀可以位于地址空间的任何位置,让管理者能够以更灵活的方式定义子网,以简便的形式指定地址中网络 ID 部分和主机 ID 部分。

RIP(Routing Information Protocol,路由信息协议)是使用最久的协议之一。RIP是一种分布式的基于距离向量的路由选择协议,RIP协议是施乐公司20世纪80年代推出的,主要适用于小规模的网络环境。RIP协议主要用于一个AS(自治系统)内的路由信息的传递,每30s发送一次路由信息更新。

OSPF路由协议是用于网际协议(IP)网络的链路状态路由协议。该协议使用链路状态路由算法的内部网关协议(IGP),在单一自治系统(AS)内部工作。适用于IPv4的OSPFv2协议定义于RFC 2328,RFC 5340定义了适用于IPv6的OSPFv3。

VLAN(虚拟局域网)是对连接到的第二层交换机端口的网络用户的逻辑分段,不受网络用户的物理位置限制而根据用户需求进行网络分段。一个VLAN可以在一个交换机或者跨交换机实现。VLAN可以根据网络用户的位置、作用、部门或者根据网络用户所使用的应用程序和协议来进行分组。基于交换机的虚拟局域网能够为局域网解决冲突域、广播域、带宽问题。

STP(Spanning Tree Protocol)是生成树协议的英文缩写,可应用于计算机网络中树形拓扑结构建立,主要作用是防止网桥网络中的冗余链路形成环路工作。但某些特定因素会导致STP失败,要排除故障可能非常困难,这取决于网络设计 。生成树协议适合所有厂商的网络设备,在配置上和体现功能强度上有所差别,但是在原理和应用效果是一致的。

NAT(Network Address Translation),是指网络地址转换,1994年提出的。
当在专用网内部的一些主机本来已经分配到了本地IP地址(即仅在本专用网内使用的专用地址),但又想和因特网上的主机通信(并不需要加密)时,可使用NAT方法。
这种方法需要在专用网(私网IP)连接到因特网(公网IP)的路由器上安装NAT软件。装有NAT软件的路由器叫做NAT路由器,它至少有一个有效的外部全球IP地址(公网IP地址)。这样,所有使用本地地址(私网IP地址)的主机在和外界通信时,都要在NAT路由器上将其本地地址转换成全球IP地址,才能和因特网连接。
另外,这种通过使用少量的全球IP地址(公网IP地址)代表较多的私有IP地址的方式,将有助于减缓可用的IP地址空间的枯竭。在RFC 2663中有对NAT的说明。

DHCP(动态主机配置协议)是一个局域网的网络协议。指的是由服务器控制一段IP地址范围,客户机登录服务器时就可以自动获得服务器分配的IP地址和子网掩码。默认情况下,DHCP作为Windows Server的一个服务组件不会被系统自动安装,还需要管理员手动安装并进行必要的配置。

直接连接两台 PC 构建 LAN

将两台 PC 直接连接构成一个网络。注意:直接连接需使用交叉线。

进行两台 PC 的基本网络配置,只需要配置 IP 地址即可,然后相互 ping 通即成功。
展示:

用ping命令说明成功了。

用交换机构建 LAN

构建如下拓扑结构的局域网:


✎ 问题

PC0 能否 ping 通 PC1、PC2、PC3 ?
PC0能够ping通PC1但是无法ping通PC2,PC3。

PC3 能否 ping 通 PC0、PC1、PC2 ?为什么?
PC3只能ping通PC2,不能ping通PC0,PC1,原因是因为PC3与PC0和PC1不在同一个一个子网下所以无法ping通

将 4 台 PC 的掩码都改为 255.255.0.0 ,它们相互能 ping 通吗?为什么?
将 4 台 PC 的掩码都改为 255.255.0.0后便可以能ping通,因为它们的IP地址与子网掩码相与得到的结果都是192.168.0.0,处于同一子网下

使用二层交换机连接的网络需要配置网关吗?为什么?
✎ 试一试
不需要网关,因为这几台主机相互之间的通信没有从此网出去,不通过网关,所以没有必要。网关像是邮局,网卡像是邮筒,物理设备。没有和外面进行“消息通信”,“发邮件”,就不需要网关。

集线器 Hub 是工作在物理层的多接口设备,它与交换机的区别是什么?请在 CPT 软件中用 Hub 构建网络进行实际验证。
集线器Hub是工作在物理层,而交换机则是工作在数据链路层。两种工作的区域不同。

交换机接口地址列表

二层交换机是一种即插即用的多接口设备,它对于收到的帧有 3 种处理方式:广播、转发和丢弃(请弄清楚何时进行何种操作)。那么,要转发成功,则交换机中必须要有接口地址列表即 MAC 表,该表是交换机通过学习自动得到的!

仍然构建上图的拓扑结构,并配置各计算机的 IP 在同一个一个子网,使用工具栏中的放大镜点击某交换机如左边的 Switch3,选择 MAC Table,可以看到最初交换机的 MAC 表是空的,也即它不知道该怎样转发帧(那么它将如何处理?),用 PC0 访问(ping)PC1 后,再查看该交换机的 MAC 表,现在有相应的记录,请思考如何得来。随着网络通信的增加,各交换机都将生成自己完整的 MAC 表,此时交换机的交换速度就是最快的!

因为当交换机刚开始的时候,MAC地址表是没有的,主机之间谁也不知道谁的MAC地址,当主机A要和主机B通讯时,首先会发送一个ARP广播,想知道B的MAC地址,交换机收到该广播包,把主机A的MAC对应到MAC地址表里,与进入得端口匹配起来,然后转发该广播,主机B响应此广播包告诉主机A自己的MAC地址,交换机也同样纪录B的MAC地址与进入端口对应起来,MAC地址表便建立了。

📬 秘籍

你还可以使用 CPT 的 Simulation 模式即模拟方式进一步看清楚这个过程!

生成树协议(Spanning Tree Protocol)

交换机在目的地址未知或接收到广播帧时是要进行广播的。如果交换机之间存在回路/环路,那么就会产生广播循环风暴,从而严重影响网络性能。

而交换机中运行的 STP 协议能避免交换机之间发生广播循环风暴。

只使用交换机,构建如下拓扑:

这是初始时的状态。我们可以看到交换机之间有回路,这会造成广播帧循环传送即形成广播风暴,严重影响网络性能。

随后,交换机将自动通过生成树协议(STP)对多余的线路进行自动阻塞(Blocking),以形成一棵以 Switch4 为根(具体哪个是根交换机有相关的策略)的具有唯一路径树即生成树!

经过一段时间,随着 STP 协议成功构建了生成树后,Switch5 的两个接口当前物理上是连接的,但逻辑上是不通的,处于Blocking状态(桔色)如下图所示:
在网络运行期间,假设某个时候 Switch4 与 Switch5 之间的物理连接出现问题(将 Switch4 与 Switch5 的连线剪掉),则该生成树将自动发生变化。Switch5 上方先前 Blocking 的那个接口现在活动了(绿色),但下方那个接口仍处于 Blocking 状态(桔色)。如下图所示:

🗣 注意

交换机的 STP 协议即生成树协议始终自动保证交换机之间不会出现回路,从而形成广播风暴。
这一点是十分有效的,逻辑上不是回路,使得能够使得网络通信正常,当某条线路断开,或者无法通信,就会使得之前逻辑断开的某条线路恢复使用,天才的设计!

📬 秘籍

使用 CPT 的 Simulation 即模拟方式可非常清楚看到这个过程!

路由器配置初步
我们模拟重庆交通大学和重庆大学两个学校的连接,构建如下拓扑:

说明一
交通大学与重庆大学显然是两个不同的子网。在不同子网间通信需通过路由器。

路由器的每个接口下至少是一个子网,图中我们简单的规划了 3 个子网:

左边路由器是交通大学的,其下使用交换机连接交通大学的网络,分配网络号 192.168.1.0/24,该路由器接口也是交通大学网络的网关,分配 IP 为 192.168.1.1
右边路由器是重庆大学的,其下使用交换机连接重庆大学的网络,分配网络号 192.168.3.0/24,该路由器接口也是重庆大学网络的网关,分配 IP 为 192.168.3.1
两个路由器之间使用广域网接口相连,也是一个子网,分配网络号 192.168.2.0/24

建立一个测试
Router0的配置
以太网口:

Router>enable // 从普通模式进入特权模式激活
Router#configure terminal // 进入全局配置模式
Router(config)#interface f0/0 // 进入配置以太网口模式
Router(config-if)#ip address 192.168.1.1 255.255.255.0 // 配置该接口的 IP
Router(config-if)#no shutdown // 激活接口
Router(config-if)#^z // 直接退到特权模式
Router#

广域网口:

Router>en // 从普通模式进入特权模式
Router#conf t // 进入全局配置模式
Router(config)#int s0/0 // 进入配置广域网口模式
Router(config-if)#ip address 192.168.2.1 255.255.255.0 //配置该接口的 IP
Router(config-if)#clock rate 64000 // 其为 DCE 端,配置时钟频率
Router(config-if)#no shutdown // 激活接口
Router(config-if)#^z // 直接退到特权模式
Router#

Router1的配置:
以太网口:

Router>en // 从普通模式进入特权模式
Router#conf t // 进入全局配置模式
Router(config)#int f0/0 // 进入配置以太网口模式
Router(config-if)#ip address 192.168.3.1 255.255.255.0 // 配置该接口的 IP
Router(config-if)#no shutdown // 激活接口
Router(config-if)#^z // 直接退到特权模式
Router#

广域网口:

Router>en // 从普通模式进入特权模式
Router#conf t // 进入全局配置模式
Router(config)#int s0/0 // 进入配置广域网口模式
Router(config-if)#ip address 192.168.2.2 255.255.255.0 //配置该接口的 IP
Router(config-if)#no shutdown // 激活接口
Router(config-if)#^z // 直接退到特权模式
Router#

pc配置就是之前那样同样按图配置就行。与演示图一致即为成功.

说明二
现实中,交通大学和重庆大学的连接是远程的。该连接要么通过路由器的光纤接口,要么通过广域网接口即所谓的 serial 口(如拓扑图所示)进行,一般不会通过双绞线连接(为什么?)。

个人觉得光纤还是传输效率高些

下面我们以通过路由器的广域网口连接为例来进行相关配置。请注意:我们选用的路由器默认没有广域网模块(名称为 WIC-1T 等),需要关闭路由器后添加,然后再开机启动。

说明三
在模拟的广域网连接中需注意 DCE 和 DTE 端(连线时线路上有提示,带一个时钟标志的是 DCE 端。有关 DCE 和 DTE 的概念请查阅相关资料。),在 DCE 端需配置时钟频率 64000

说明四
路由器有多种命令行配置模式,每种模式对应不同的提示符及相应的权限。

请留意在正确的模式下输入配置相关的命令。

User mode:用户模式
Privileged mode:特权模式
Global configuration mode:全局配置模式
Interface mode:接口配置模式
Subinterface mode:子接口配置模式
说明五
在现实中,对新的路由器,显然不能远程进行配置,我们必须在现场通过笔记本的串口与路由器的 console 接口连接并进行初次的配置(注意设置比特率为9600)后,才能通过网络远程进行配置。这也是上图左上画出笔记本连接的用意。

说明六
在路由器的 CLI 界面中,可看到路由器刚启动成功后,因为无任何配置,将会提示是否进行对话配置(Would you like to enter the initial configuration dialog?),因其步骤繁多,请选择 NO

比如交通大学路由器的初步配置可以如下:

🗣 注意

在我们的实验中可不进行如下的配置,但在现实中为了安全,以下的登录及特权密码等配置是必须的,否则每个人都可操作你的路由器或交换机!

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#interface FastEthernet0/0
Router(config-if)#ip address 192.168.1.1 255.255.255.0
Router(config-if)#no shutdown
Router(config-if)#exit
Router(config)#line vty 0 4 //可支持0-4共5个终端同时登录
Router(config-line)#password dswybs // 远程登录密码
Router(config-line)#login
Router(config-line)#exit
Router(config)#enable password dswybs // 特权模式密码
Router(config)#^Z  // 退出

拓扑图中路由器各接口配置数据如下:

接口名 IP 子网掩码

交通大学 Router2 以太网口
192.168.1.1
255.255.255.0

交通大学 Router2 广域网口
192.168.2.1
255.255.255.0

重庆大学 Router3 以太网口
192.168.3.1
255.255.255.0

重庆大学 Router3 广域网口
192.168.2.2
255.255.255.0

拓扑图中各 PC 配置数据如下:
节点名 IP 子网掩码 网关

交通大学 PC0
192.168.1.2
255.255.255.0
192.168.1.1

交通大学 PC1
192.168.1.3
255.255.255.0
192.168.1.1

重庆大学 PC2
192.168.3.2
255.255.255.0
192.168.3.1

重庆大学 PC3
192.168.3.3
255.255.255.0
192.168.3.1

交通大学路由器基本配置如下:
以太网口:

Router>enable   // 从普通模式进入特权模式
Router#configure terminal   // 进入全局配置模式
Router(config)#interface f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 192.168.1.1 255.255.255.0   // 配置该接口的 IP
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式
Router#

广域网口:



Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 192.168.2.1 255.255.255.0   //配置该接口的 IP
Router(config-if)#clock rate 64000    // 其为 DCE 端,配置时钟频率
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式
Router#

重庆大学路由器基本配置如下:
以太网口:

Router>en // 从普通模式进入特权模式
Router#conf t // 进入全局配置模式
Router(config)#int f0/0 // 进入配置以太网口模式
Router(config-if)#ip address 192.168.3.1 255.255.255.0 // 配置该接口的 IP
Router(config-if)#no shutdown // 激活接口
Router(config-if)#^z // 直接退到特权模式
Router#
广域网口:

Router>en // 从普通模式进入特权模式
Router#conf t // 进入全局配置模式
Router(config)#int s0/0 // 进入配置广域网口模式
Router(config-if)#ip address 192.168.2.2 255.255.255.0 //配置该接口的 IP
Router(config-if)#no shutdown // 激活接口
Router(config-if)#^z // 直接退到特权模式
Router#
至此,路由器基本的配置完成。请按照上面 PC 配置表继续配置各个 PC 。

✎ 问题

现在交通大学内的各 PC 及网关相互能 ping 通,重庆大学也类似。但不能从交大的 PC ping 通重大的 PC,反之亦然,也即不能跨子网。为什么?

文档过大将转到下一篇:
计算机网络实验 第二卷
https://blog.csdn/qq_45790833/article/details/122205700?spm=1001.2014.3001.5501

更多推荐

【计算机网络实验 第一卷:使劲学 加相关网络知识---随着深入会不断补充】

本文发布于:2023-04-15 22:50:00,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/b013521a33be7f29bfd518e2c17c124b.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:第一卷   计算机网络   知识   网络

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!

  • 79377文章数
  • 45阅读数
  • 0评论数