文件系统

编程知识 更新时间:2023-04-24 13:30:58

在工程架构领域里,存储是一个非常重要的方向,这个方向从底至上,我分成了如下几个层次来介绍:

  1. 硬件层:讲解磁盘,SSD,SAS, NAS, RAID等硬件层的基本原理,以及其为操作系统提供的存储界面;
  2. 操作系统层:即文件系统,操作系统如何将各个硬件管理并对上提供更高层次接口;
  3. 单机引擎层:常见存储系统对应单机引擎原理大概介绍,利用文件系统接口提供更高级别的存储系统接口;
  4. 分布式层:如何将多个单机引擎组合成一个分布式存储系统;
  5. 查询层:用户典型的查询语义表达以及解析;

                                                           元数据——块数据——缓冲数据——文件数据

概述

操作系统对系统的软件资源(不论是应用软件和系统软件)的管理都以文件方式进行,承担这部分功能的操作系统称为文件系统。

文件系统

文件系统是操作系统用于明确存储设备(常见的是磁盘,也有基于NAND Flash的固态硬盘)或分区上的文件的方法和数据结构;即在存储设备上组织文件的方法。操作系统中负责管理和存储文件信息的软件机构称为文件管理系统,简称文件系统。文件系统由三部分组成:文件系统的接口,对对象操纵和管理的软件集合,对象及属性。从系统角度来看,文件系统是对文件存储设备的空间进行组织和分配,负责文件存储并对存入的文件进行保护和检索的系统。具体地说,它负责为用户建立文件,存入、读出、修改、转储文件,控制文件的存取,当用户不再使用时撤销文件等。

在计算机中,文件系统(file system)是命名文件及放置文件的逻辑存储和恢复的系统。DOS、Windows、OS/2、Macintosh和UNIX-based操作系统都有文件系统,在此系统中文件被放置在分等级的(树状)结构中的某一处。文件被放置进目录(Windows中的文件夹)或子目录,在树状结构中你希望的位置中。【linux树形目录,也就是树谱总分关系无限下延续】

文件系统指定命名文件的规则。这些规则包括文件名的字符数最大量,哪种字符可以使用,以及某些系统中文件名后缀可以有多长。文件系统还包括通过目录结构找到文件的指定路径的格式。 

文件系统是软件系统的一部分,它的存在使得应用可以方便的使用抽象命名的数据对象和大小可变的空间。

文件系统种类

FAT(8/16/32)
NTFS
CDFS
exFAT
RAW
Ext
     1.Ext2
     2.Ext3
     3.Ext4

XFS
Btrfs
ZFS
HFS
HFS+
ReiserFS
JFS
VMFS
UFS
VXFS
ReFS
WBFS
PFS

简单介绍

FAT16:我们以前用的DOS、Windows 95都使用FAT16文件系统,现在常用的Windows 98/2000/XP等系统均支持FAT16文件系统。它最大可以管理大到2GB的分区,但每个分区最多只能有65525个簇(簇是磁盘空间的配置单位)。随着硬盘或分区容量的增大,每个簇所占的空间将越来越大,从而导致硬盘空间的浪费。 

FAT32:随着大容量硬盘的出现,从Windows 98开始,FAT32开始流行。它是FAT16的增强版本,可以支持大到2TB(2048G的分区。FAT32使用的簇比FAT16小,从而有效地节约了硬盘空间。 

NTFS:最大分区2TB。另:简单卷最大2TB,动态卷最大16TB。

Ext4 是 Ext3 的改进版,修改了 Ext3 中部分重要的数据结构,而不仅仅像 Ext3 对 Ext2 那样,只是增加了一个日志功能而已。Ext4 可以提供更佳的性能和可靠性,还有更为丰富的功能:
1. 与 Ext3 兼容。执行若干条命令,就能从 Ext3 在线迁移到 Ext4,而无须重新格式化磁盘或重新安装系统。原有 Ext3 数据结构照样保留,Ext4 作用于新数据,当然,整个文件系统因此也就获得了 Ext4 所支持的更大容量。

2. 更大的文件系统和更大的文件。较之 Ext3 目前所支持的最大 16TB 文件系统和最大 2TB 文件,Ext4 分别支持 1EB(1,048,576TB, 1EB=1024PB, 1PB=1024TB)的文件系统,以及 16TB 的文件。

3. 无限数量的子目录。Ext3 目前只支持 32,000 个子目录,而 Ext4 支持无限数量的子目录。

ext3和ext4的最大区别在于,ext3在fsck时需要耗费大量时间(文件越多,时间越长),而ext4在fsck时用的时间会少非常多

ext4是第四代扩展文件系统(英语:Fourth EXtended filesystem,缩写为ext4)是linux系统下的日志文件系统,是ext3文件系统的后继版本
ext4的文件系统容量达到1EB,而文件容量则达到16TB,这是一个非常大的数字了。对一般的台式机和服务器而言,这可能并不重要,但对于大型磁盘阵列的用户而言,这就非常重要了。
ext3目前只支持32000个子目录,而ext4取消了这一限制,理论上支持无限数量的子目录。

xfs是一种非常优秀的日志文件系统,它是SGI公司设计的。xfs被称为业界最先进的、最具可升级性的文件系统技术
xfs是一个64位文件系统,最大支持8EB减1字节的单个文件系统,实际部署时取决于宿主操作系统的最大块限制。对于一个32位Linux系统,文件和文件系统的大小会被限制在16TB
xfs在很多方面确实做的比ext4好,ext4受限制于磁盘结构和兼容问题,可扩展性和scalability确实不如xfs,另外xfs经过很多年发展,各种锁的细化做的也比较好。

注:Ext2: 是 GNU/Linux 系统中标准的文件系统,其特点为存取文件的性能极好,对于中小型的文件更显示出优势,这主要得利于其簇快取层的优良设计。其单一文件大小与文件系统本身的容量上限与文件系统本身的簇大小有关,在一般常见的 x86 电脑系统中,簇最大为 4KB, 则单一文件大小上限为 2048GB, 而文件系统的容量上限为 16384GB。但由于目前核心 2.4 所能使用的单一分割区最大只有 2048GB,因此实际上能使用的文件系统容量最多也只有 2048GB。

centos7.0开始默认文件系统是xfs,centos6是ext4,centos5是ext3

 

各种文件系统支持的最大硬盘容量

NTFS格式(windows的分区,Linux也能用):支持最大分区为2TB,最大文件为2TB;

FAT32格式(windows的分区,Linux也能用):支持最大分区为128GB,最大文件为4GB;

Ext2格式:最大分区大小为4TB,最大文件大小为1TB;

Ext3格式:最大分区大小为16TB,最大文件大小为2TB;

EXT4格式:最大分区大小为1EB,最大文件大小为16TB;

XFS格式:最大支持8EB减1字节的单个文件系统;实际部署时取决于宿主操作系统的最大块限制。对于一个32位Linux操作系统,文件和文件系统的大小会被限制在16TB;

ReiserFS格式:最大分区大小为4TB,最大文件大小为1TB;

 注:1EB=1024PB,1PB=1024TB,1TB=1024GB

EXT4是第四代扩展文件系统(英语:Fourth EXtended filesystem,缩写为ext4)是Linux系统下的日志文件系统,是ext3文件系统的后继版本。
Ext4的文件系统容量达到1EB,而文件容量则达到16TB,这是一个非常大的数字了。对一般的台式机和服务器而言,这可能并不重要,但对于大型磁盘阵列的用户而言,这就非常重要了。

XFS是一个64位文件系统,最大支持8EB减1字节的单个文件系统,实际部署时取决于宿主操作系统的最大块限制。对于一个32位Linux系统,文件和文件系统的大小会被限制在16TB。

二者各有特点,而性能表现基本上是差不多的。例如,谷歌公司就考虑将EXT2系统升级,最终确定为EXT4系统。谷歌公司表示,他们还考虑过XFS和JFS。结果显示,EXT4和XFS的表现类似,不过从EXT2升级到EXT4比升级到XFS容易。

对于存储海量的小文件,或者超大规模的文件,文件大小也偏大的话,建议你使用xfs,否则使用ext4,ext4比较稳定,是主流的Linux文件系统。

在Linux下,理论上文件最大可以达到4T(看清楚是4T不是4G),但在实际操作中都在2G左右(一般不超过4G),超过2G的单个文件较之小于2G的文件安全系数降低不少。另外对于ext3系统,如果突然断电,容易出现硬盘问题,这种问题在大文件多的硬盘、硬盘中大文件多的区域特别容易发生,而且经常是毁灭性的。如果要存放大文件,建议使用reiserfs系统。

功能

结构图

 

文件的系统是操作系统用于明确磁盘或分区上的文件的方法和数据结构;即在磁盘上组织文件的方法。也指用于存储文件的磁盘或分区,或文件系统种类。因此,可以说"我有2个文件系统"意思是他有2个分区,一个存文件,或他用 "扩展文件系统",意思是文件系统的种类。

磁盘或分区和它所包括的文件系统的不同是很重要的。少数程序(包括最有理由的产生文件系统的程序)直接对磁盘或分区的原始扇区进行操作;这可能破坏一个存在的文件系统。大部分程序基于文件系统进行操作,在不同种文件系统上不能工作。

一个分区或磁盘在作为文件系统使用前,需要初始化,并将记录数据结构写到磁盘上。这个过程就叫建立文件系统。

大部分UNIX文件系统种类具有类似的通用结构,即使细节有些变化。其中心概念是超级块superblock,i节点inode,数据块data block,目录块directory block,和间接块indirection block。超级块包括文件系统的总体信息,比如大小(其准确信息依赖文件系统)。i节点包括除了名字外的一个文件的所有信息,名字与i节点数目一起存在目录中,目录条目包括文件名和文件的i节点数目。i节点包括几个数据块的数目,用于存储文件的数据。i节点中只有少量数据块数的空间,如果需要更多,会动态分配指向数据块的指针空间。这些动态分配的块是间接块;为了找到数据块,这名字指出它必须先找到间接块的号码。

UNIX文件系统通常允许在文件中产生孔,意思是文件系统假装文件中有一个特殊的位置只有0字节,但没有为这文件的这个位置保留实际的磁盘空间。这对小的 [2]  二进制文件经常发生,Linux共享库、一些数据库和其他一些特殊情况。

孔有一定的用处。在笔者的系统中,一个简单的测量工具显示在200MB使用的磁盘空间中,由于孔,节约了大约4MB。在这个系统中,程序相对较少,没有 [3]  数据库文件。

文件系统的功能包括:管理和调度文件的存储空间,提供文件的逻辑结构、物理结构和存储方法;实现文件从标识到实际地址的映射,实现文件的控制操作和存取操作,实现文件信息的共享并提供可靠的文件保密和保护措施,提供文件的安全措施。

文件的逻辑结构是依照文件的内容的逻辑关系组织文件结构。文件的逻辑结构可以分为流式文件和记录式文件。

流式文件:文件中的数据是一串字符流,没有结构。

记录文件:由若干逻辑记录组成,每条记录又由相同的数据项组成,数据项的长度可以是确定的,也可以是不确定的。

主要缺陷:数据关联差,数据不一致,冗余性。

linux文件系统详解

最近在做磁盘性能优化,需要结合文件系统原理去思考优化方向,因此借此机会进一步加深了对文件系统的认识。在看这篇文章之前,建议先看下前面一篇关于磁盘工作原理的解读。下面简单总结一些要点分享出来:

Linux文件系统中的文件是数据的集合,文件系统不仅包含着文件中的数据而且还有文件系统的结构,所有Linux 用户和程序看到的文件、目录、软连接及文件保护信息等都存储在其中。

一、文件系统层次分析

由上而下主要分为用户层、VFS层、文件系统层、缓存层、块设备层、磁盘驱动层、磁盘物理层

用户层:最上面用户层就是我们日常使用的各种程序,需要的接口主要是文件的创建、删除、打开、关闭、写、读等。 

VFS层:我们知道Linux分为用户态和内核态,用户态请求硬件资源需要调用System Call通过内核态去实现。用户的这些文件相关操作都有对应的System Call函数接口,接口调用 VFS对应的函数。 

文件系统层:不同的文件系统实现了VFS的这些函数,通过指针注册到VFS里面。所以,用户的操作通过VFS转到各种文件系统。文件系统把文件读写命令转化为对磁盘LBA的操作,起了一个翻译和磁盘管理的作用。 

缓存层:文件系统底下有缓存,Page Cache,加速性能。对磁盘LBA的读写数据缓存到这里。

块设备层:块设备接口Block Device是用来访问磁盘LBA的层级,读写命令组合之后插入到命令队列,磁盘的驱动从队列读命令执行。Linux设计了电梯算法等对很多LBA的读写进行优化排序,尽量把连续地址放在一起。

磁盘驱动层:磁盘的驱动程序把对LBA的读写命令转化为各自的协议,比如变成ATA命令,SCSI命令,或者是自己硬件可以识别的自定义命令,发送给磁盘控制器。Host Based SSD甚至在块设备层和磁盘驱动层实现了FTL,变成对Flash芯片的操作。 

磁盘物理层:读写物理数据到磁盘介质。

二、文件系统结构与工作原理(主要以ext4为例)

我们都知道,windows文件系统主要有fat、ntfs等,而linux文件系统则种类多的很,主要有VFS做了一个软件抽象层,向上提供文件操作接口,向下提供标准接口供不同文件系统对接,下面主要就以EXT4文件系统为例,讲解下文件系统结构与工作原理:

上面两个图大体呈现了ext4文件系统的结构,从中也相信能够初步的领悟到文件系统读写的逻辑过程。下面对上图里边的构成元素做个简单的讲解:

引导块:为磁盘分区的第一个块,记录文件系统分区的一些信息,,引导加载当前分区的程序和数据被保存在这个块中。一般占用2kB,

超级块:

超级块用于存储文件系统全局的配置参数(譬如:块大小,总的块数和inode数)和动态信息(譬如:当前空闲块数和inode数),其处于文件系统开始位置的1k处,所占大小为1k。为了系统的健壮性,最初每个块组都有超级块和组描述符表(以下将用GDT)的一个拷贝,但是当文件系统很大时,这样浪费了很多块(尤其是GDT占用的块多),后来采用了一种稀疏的方式来存储这些拷贝,只有块组号是3, 5 ,7的幂的块组(譬如说1,3,5,7,9,25,49…)才备份这个拷贝。通常情况下,只有主拷贝(第0块块组)的超级块信息被文件系统使用,其它拷贝只有在主拷贝被破坏的情况下才使用。

块组描述符:

GDT用于存储块组描述符,其占用一个或者多个数据块,具体取决于文件系统的大小。它主要包含块位图,inode位图和inode表位置,当前空闲块数,inode数以及使用的目录数(用于平衡各个块组目录数),具体定义可以参见ext3_fs.h文件中struct ext3_group_desc。每个块组都对应这样一个描述符,目前该结构占用32个字节,因此对于块大小为4k的文件系统来说,每个块可以存储128个块组描述符。由于GDT对于定位文件系统的元数据非常重要,因此和超级块一样,也对其进行了备份。GDT在每个块组(如果有备份)中内容都是一样的,其所占块数也是相同的。从上面的介绍可以看出块组中的元数据譬如块位图,inode位图,inode表其位置不是固定的,当然默认情况下,文件系统在创建时其位置在每个块组中都是一样的,如图2所示(假设按照稀疏方式存储,且n不是3,5,7的幂)

块组:

每个块组包含一个块位图块,一个 inode 位图块,一个或多个块用于描述 inode 表和用于存储文件数据的数据块,除此之外,还有可能包含超级块和所有块组描述符表(取决于块组号和文件系统创建时使用的参数)。下面将对这些元数据作一些简要介绍。

块位图:

块位图用于描述该块组所管理的块的分配状态。如果某个块对应的位未置位,那么代表该块未分配,可以用于存储数据;否则,代表该块已经用于存储数据或者该块不能够使用(譬如该块物理上不存在)。由于块位图仅占一个块,因此这也就决定了块组的大小。

Inode位图:

Inode位图用于描述该块组所管理的inode的分配状态。我们知道inode是用于描述文件的元数据,每个inode对应文件系统中唯一的一个号,如果inode位图中相应位置位,那么代表该inode已经分配出去;否则可以使用。由于其仅占用一个块,因此这也限制了一个块组中所能够使用的最大inode数量。

Inode表:

Inode表用于存储inode信息。它占用一个或多个块(为了有效的利用空间,多个inode存储在一个块中),其大小取决于文件系统创建时的参数,由于inode位图的限制,决定了其最大所占用的空间。

以上这几个构成元素所处的磁盘块成为文件系统的元数据块,剩余的部分则用来存储真正的文件内容,称为数据块,而数据块其实也包含数据和目录。

了解了文件系统的结构后,接下来我们来看看操作系统是如何读取一个文件的:

大体过程如下:

1、根据文件所在目录的inode信息,找到目录文件对应数据块

2、根据文件名从数据块中找到对应的inode节点信息

3、从文件inode节点信息中找到文件内容所在数据块块号

4、读取数据块内容

到这里,相信很多人会有一个疑问,我们知道一个文件只有一个Inode节点来存放它的属性信息,那么你可能会想如果一个大文件,那它的block一定是多个的,且可能不连续的,那么inode怎么来表示呢,下面的图告诉你答案:

 

 也就是说,如果文件内容太大,对应数据块数量过多,inode节点本身提供的存储空间不够,会使用其他的间接数据块来存储数据块位置信息,最多可以有三级寻址结构。

 到这里,应该都已经非常清楚文件读取的过程了,那么下面再抛出两个疑问:

1、文件的拷贝、剪切的底层过程是怎样的?

2、软连接和硬连接分别是如何实现的?

下面来结合stat命令动手操作一下,便知真相:

1)拷贝文件:创建一个新的inode节点,并且拷贝数据块内容

2)剪切文件:同个分区里边mv,inode节点不变,只是更新目录文件对应数据块里边的文件名和inode对应关系;跨分区mv,则跟拷贝一个道理,需要创建新的inode,因为inode节点不同分区是不能共享的。

3)软连接:创建软连接会创建一个新的inode节点,其对应数据块内容存储所链接的文件名信息,这样原文件即便删除了,重新建立一个同名的文件,软连接依然能够生效。

 

 4)硬链接:创建硬链接,并不会新建inode节点,只是links加1,还有再目录文件对应数据块上增加一条文件名和inode对应关系记录;只有将硬链接和原文件都删除之后,文件才会真正删除,即links为0才真正删除。

 三、文件顺序读写和随机读写

从前面文章了解了磁盘工作原理之后,也已经明白了为什么文件随机读写速度会比顺序读写差很多,这个问题在windows里边更加明显,为什么呢?究其原因主要与文件系统工作机制有关,fat和ntfs文件系统设计上,每个文件所处的位置相对连续甚至紧靠在一起,这样没有为每个文件留下足够的扩展空间,因此容易产生磁盘碎片,用过windows系统的应该也知道,windows磁盘分区特别提供了磁盘碎片整理的高级功能。如下图:

那回过来,看看linux 文件系统ext4,都说linux不需要考虑磁盘碎片,究竟是怎么回事?

主要是因为Linux的文件系统会将文件分散在整个磁盘,在文件之间留有大量的自由空间,而不是像Windows那样将文件一个接一个的放置。当一个文件被编辑了并且变大了,一般都会有足够的自由空间来保存文件。如果碎片真的产生了,文件系统就会尝试在日常使用中将文件移动来减少碎片,所以不需要专门的碎片整理程序。但是,如果磁盘空间占用已经快满了,那碎片是不可避免的,文件系统的设计本来就是用来满足正常情况下使用的。如果磁盘空间不够,那要么就是数据冗余了,要么就该换容量更大的磁盘。你可以使用fsck命令来检测一下一个Linux文件系统的碎片化程度,只需要在输出中查看非连续i节点个数(non-contiguous inodes)就可以了。

关于文件系统的就讲这么多,下篇会讲解linux内核提供的一个资源管控机制cgroup,分析其原理及使用过程。

ext4文件系统bug:
http://www.phoronix/scan.php?page=news_item&px=MTIxNDQ

Linux(unix)与微软文件系统比较

相同点

用户和组

Linux是多用户多任务操作系统而Windows是单用户多任务操作系统。都可以由许多不同的用户来使用,为每个用户提供单独的环境和资源。基于用户身份来控制安全性。都可以以组成员的方式来控制资源的访问权限,这样在用户数目较大时可以不必为每一个帐号设置权限。

用户和组可以集中管理,让多个服务器共享相同的用户和身份验证数据。

文件系统

Linux和Windows都支持多种文件系统。文件资源可以通过NetBIOS、FTP或者其他协议与其他客户机共享。可以很灵活地对各个独立的文件系统进行组织,由管理员来决定它们在何处可以以何种方式被访问。

端口和设备

两种操作系统都支持各种物理设备端口,比如并口、串口和 USB 接口。支持各种控制器,比如 IDE 和 SCSI 控制器。Linux 还支持很多“刚刚上市”的标准硬件。

网络

Linux和Windows都支持多种网络协议,比如TCP/IP、NetBIOS和IPX。都支持多种类型的网络适配器。都具备通过网络共享资源的能力,比如共享文件和打印。都可以提供网络服务能力,比如 DHCP 和 DNS。

服务

Linux和Windows都提供服务。所谓服务,指的是那些在后台运行的应用程序,可以为系统和远程调用该服务的计算机提供一些功能。在系统引导的时候可以单独控制并自动启动这些程序。(注意:Linux 中沿用了 Unix 的习惯,称这种应用程序为 daemon)

不同点

Linux 的应用目标是网络而不是打印

Windows最初出现的时候,这个世界还是一个纸张的世界。Windows的伟大成就之一在于您的工作成果可以方便地看到并打印出来。这样一个开端影响了 Windows 的后期发展。

同样,Linux 也受到了其起源的影响。Linux 的设计定位于网络操作系统。它的设计灵感来自于 Unix操作系统,因此它的命令的设计比较简单,或者说是比较简洁。由于纯文本可以非常好地跨网络工作,所以 Linux 配置文件和数据都以文本为基础。

对那些熟悉图形环境的人来说,Linux服务器初看可能比较原始。但是Linux开发更多关注的是它的内在功能而不是表面上的东西。即使是在纯文本的环境中,Linux同样拥有非常先进的网络、脚本和安全能力。执行一些任务所需的某些表面上看起来比较奇怪的步骤是令人费解的,除非您认识到 Linux 是期望在网络上与其他 Linux系统协同执行这些任务。Linux的自动执行能力也很强,只需要设计批处理文件就可以让系统自动完成非常详细的任务。Linux 的这种能力来自于其基于文本的本质。

可选的 GUI

Linux有图形组件。Linux支持高端的图形适配器和显示器,完全胜任图形相关的工作。许多数字效果艺术家在Linux工作站上来进行他们的设计工作,而以前这些工作需要使用IRIX系统来完成。但是,图形环境并没有集成到 Linux 中,而是运行于系统之上的单独一层。这意味着您可以只运行 GUI,或者在需要时才运行 GUI。如果您的系统主要任务是提供Web应用,那么您可以停掉图形界面,而将其所用的内存和CPU资源用于您的服务。如果您需要在 GUI 环境下做一些工作,可以再打开它,工作完成后再将其关闭。

Linux 有图形化的管理工具,以及日常办公的工具,比如电子邮件、网络浏览器和文档处理工具等。不过,在 Linux 中,图形化的管理工具通常是控制台 (命令行) 工具的扩展。也就是说,用图形化工具能完成的所有工作,用控制台命令同样可以完成。同样,使用图形化工具并不妨碍您对配置文件进行手工修改。其实际意义可能并不是特别显而易见,但是,如果在图形化管理工具中所做的任何工作都可以以命令行的方式完成,这就表示那些工作也可以由一个脚本来实现。脚本化的命令可以成为自动执行的任务。Linux 同时支持这两种方式,并不要求您只用文本或者只用 GUI。您可以根据您的需要选择最好的方法。

Linux 中的配置文件是人类可读的文本文件,这与过去的 Windows 中的 INI 文件类似,但与 Windows 的注册表机制在思路上有本质的区别。每一个应用程序都有其自己的配置文件,而且通常不与其他的配置文件放在一起。不过,大部分的配置文件都存放于一个目录树 (/etc) 下的单个地方,所以看起来它们在逻辑上是在一起。文本文件的配置方式使得不通过特殊的系统工具就可以完成配置文件的备份、检查和编辑工作。

文件名扩展

Linux不使用文件名扩展来识别文件的类型。相反,Linux根据文件的头内容来识别其类型。为了提高文件可读性您仍可以使用文件名扩展,但这对 Linux 系统来说没有任何作用。不过,有一些应用程序,比如 Web 服务器,可能使用命名约定来识别文件类型,但这只是特定的应用程序的要求而不是 Linux 系统本身的要求。

Linux通过文件访问权限来判断文件是否为可执行文件。任何一个文件都可以赋予可执行权限,这样程序和脚本的创建者或管理员可以将它们识别为可执行文件。这样做有利于安全。保存到系统上的可执行的文件不能自动执行,这样就可以防止许多脚本病毒。

重新引导是最后的手段

如果您使用Windows已经很长时间了,您可能已经习惯出于各种原因(从软件安装到纠正服务故障)而重新引导系统。在Linux思想中您的这一习惯需要改变。Linux在本质上更遵循“牛顿运动定律”。一旦开始运行,它将保持运行状态,直到受到外来因素的影响,比如硬件的故障。实际上,Linux系统的设计使得应用程序不会导致内核的崩溃,因此不必经常重新引导(与Windows系统的设计相对而言)。所以除了Linux内核之外,其他软件的安装、启动、停止和重新配置都不用重新引导系统。

如果您确实重新引导了 Linux 系统,问题很可能得不到解决,而且还会使问题更加恶化。学习并掌握 Linux 服务和运行级别是成功解决问题的关键。学习 Linux 最困难的就是克服重新引导系统的习惯。

另外,您可以远程地完成Linux中的很多工作。只要有一些基本的网络服务在运行,您就可以进入到那个系统。而且,如果系统中一个特定的服务出现了问题,您可以在进行故障诊断的同时让其他服务继续运行。当您在一个系统上同时运行多个服务的时候,这种管理方式非常重要。

命令区分大小写

所有的 Linux 命令和选项都区分大小写。例如, -R 与 -r 不同,会去做不同的事情。控制台命令几乎都是小写的。

【参考资料】

1、存储系统科普——文件系统介绍 - 玄苦 - 博客园 https://wwwblogs/xuanku/p/io_fs.html

2、对文件系统的理解 - 一肩担风月 - 博客园 https://wwwblogs/shangye/p/6177993.html

3、Linux文件系统详解 - AlanTu - 博客园 https://wwwblogs/alantu2018/p/8461749.html

4、Linux文件系统_ https://baike.baidu/item/Linux%E6%96%87%E4%BB%B6%E7%B3%BB%E7%BB%9F/10986747

5、linux文件系统特点-linux操作系统-麦子学院 http://www.maiziedu/wiki/linux/feature/

6、深入理解操作系统原理之文件系统 -  https://blog.csdn/xiaokang123456kao/article/details/74171875

更多推荐

文件系统

本文发布于:2023-04-18 14:38:00,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/3cf876d8cd9f8d933d31a23cbd9f3a83.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:文件系统

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!

  • 85967文章数
  • 16864阅读数
  • 0评论数