Integration using Feynman technique

编程入门 行业动态 更新时间:2024-10-28 00:27:09

<a href=https://www.elefans.com/category/jswz/34/1762338.html style=Integration using Feynman technique"/>

Integration using Feynman technique

求解积分:

∫ − ∞ + ∞ e − x 2 sin ⁡ 2 ( x 2 ) x 2 d x \int_{-\infty}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x ∫−∞+∞​x2e−x2sin2(x2)​dx

解:

令:

I = ∫ − ∞ + ∞ e − x 2 sin ⁡ 2 ( x 2 ) x 2 d x I=\int_{-\infty}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x I=∫−∞+∞​x2e−x2sin2(x2)​dx

由于是偶函数,所以:

I = 2 ∫ 0 + ∞ e − x 2 sin ⁡ 2 ( x 2 ) x 2 d x I=2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x I=2∫0+∞​x2e−x2sin2(x2)​dx

下面使用一个小技巧,即通过添加参数 t t t 拓展上述积分:

I ( t ) = 2 ∫ 0 + ∞ e − x 2 sin ⁡ 2 ( t x 2 ) x 2 d x I(t)=2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x I(t)=2∫0+∞​x2e−x2sin2(tx2)​dx

然后对上式等号左右进行微分:

d d t I ( t ) = d d t 2 ∫ 0 + ∞ e − x 2 sin ⁡ 2 ( t x 2 ) x 2 d x = 2 ∫ 0 + ∞ ∂ ∂ t e − x 2 sin ⁡ 2 ( t x 2 ) x 2 d x = 2 ∫ 0 + ∞ e − x 2 x 2 2 sin ⁡ ( t x 2 ) cos ⁡ ( t x 2 ) x 2 d x = 4 ∫ 0 + ∞ e − x 2 sin ⁡ ( t x 2 ) cos ⁡ ( t x 2 ) d x = 4 ∫ 0 + ∞ e − x 2 sin ⁡ ( 2 t x 2 ) d x \begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}I(t)&=\frac{\mathrm{d}}{\mathrm{d}t}2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x\\ &=2\int_{0}^{+\infty}\frac{\partial}{\partial t}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x\\ &=2\int_{0}^{+\infty}\frac{e^{-x^{2}}}{x^{2}}2\sin\left(tx^{2}\right)\cos\left(tx^{2}\right)x^{2}\mathrm{d}x\\ &=4\int_{0}^{+\infty}e^{-x^{2}}\sin\left(tx^{2}\right)\cos\left(tx^{2}\right)\mathrm{d}x\\ &=4\int_{0}^{+\infty}e^{-x^{2}}\sin\left(2tx^{2}\right)\mathrm{d}x\\ \end{aligned} dtd​I(t)​=dtd​2∫0+∞​x2e−x2sin2(tx2)​dx=2∫0+∞​∂t∂​x2e−x2sin2(tx2)​dx=2∫0+∞​x2e−x2​2sin(tx2)cos(tx2)x2dx=4∫0+∞​e−x2sin(tx2)cos(tx2)dx=4∫0+∞​e−x2sin(2tx2)dx​

由于:

e i x = cos ⁡ x + i sin ⁡ x e^{\mathrm{i}x}=\cos x+\mathrm{i}\sin x eix=cosx+isinx

所以:

I m [ e 2 i t x 2 ] = sin ⁡ ( 2 t x 2 ) \mathrm{Im}\left[e^{2\mathrm{i}tx^{2}}\right]=\sin\left(2tx^{2}\right) Im[e2itx2]=sin(2tx2)

代入积分方程中:

I ′ ( t ) = I m [ 4 ∫ 0 + ∞ e − x 2 e 2 i t x 2 d x ] = I m [ 4 ∫ 0 + ∞ e − x 2 ( 1 − 2 i t ) d x ] \begin{aligned} I'(t) &=\mathrm{Im}\left[4\int_{0}^{+\infty}e^{-x^{2}}e^{2\mathrm{i}tx^{2}}\mathrm{d}x\right]\\ &=\mathrm{Im}\left[4\int_{0}^{+\infty}e^{-x^{2}(1-2\mathrm{i}t)}\mathrm{d}x\right]\\ \end{aligned} I′(t)​=Im[4∫0+∞​e−x2e2itx2dx]=Im[4∫0+∞​e−x2(1−2it)dx]​

考虑到:

∫ 0 + ∞ e − α x 2 d x = 1 2 π α \int_{0}^{+\infty}e^{-\alpha x^{2}}\mathrm{d}x=\frac{1}{2}\sqrt{\frac{\pi}{\alpha}} ∫0+∞​e−αx2dx=21​απ​

代入到前式中:

I ′ ( t ) = 2 π I m [ 1 1 − 2 i t ] \begin{aligned} I'(t) &=2\sqrt{\pi}\mathrm{Im}\left[\frac{1}{\sqrt{1-2\mathrm{i}t}}\right]\\ \end{aligned} I′(t)​=2π ​Im[1−2it ​1​]​

将上式等号两端积分:

∫ 0 + ∞ d d t I ( t ) d t = I ( t ) = 2 π I m [ ∫ 0 + ∞ ( 1 − 2 i t ) − 1 / 2 d t ] = 2 π I m [ ( 1 − 2 i t ) 1 / 2 1 2 ( − 2 i ) + C ] = 2 π I m [ i ( 1 − 2 i t ) 1 / 2 ] + C \begin{aligned} \int_{0}^{+\infty}\frac{\mathrm{d}}{\mathrm{d}t}I(t)\mathrm{d}t &=I(t)\\ &=2\sqrt{\pi}\mathrm{Im}\left[\int_{0}^{+\infty}\left(1-2\mathrm{i}t\right)^{-1/2}\mathrm{d}t\right]\\ &=2\sqrt{\pi}\mathrm{Im}\left[\frac{(1-2\mathrm{i}t)^{1/2}}{\frac{1}{2}(-2\mathrm{i})}+C\right]\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}(1-2\mathrm{i}t)^{1/2}\right]+C\\ \end{aligned} ∫0+∞​dtd​I(t)dt​=I(t)=2π ​Im[∫0+∞​(1−2it)−1/2dt]=2π ​Im[21​(−2i)(1−2it)1/2​+C]=2π ​Im[i(1−2it)1/2]+C​

考虑到:

I ( t ) = 2 ∫ 0 + ∞ e − x 2 sin ⁡ 2 ( t x 2 ) x 2 d x I(t)=2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x I(t)=2∫0+∞​x2e−x2sin2(tx2)​dx

此时,令 t = 0 t=0 t=0,

I ( t = 0 ) = 0 I(t=0)=0 I(t=0)=0

则前式的结果:

I ( t = 0 ) = 0 = 2 π I m [ i ( 1 − 2 i t ) 1 / 2 ] + C = 2 π I m [ i ] + C = 2 π + C \begin{aligned} I(t=0) &=0\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}(1-2\mathrm{i}t)^{1/2}\right]+C\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}\right]+C\\ &=2\sqrt{\pi}+C\\ \end{aligned} I(t=0)​=0=2π ​Im[i(1−2it)1/2]+C=2π ​Im[i]+C=2π ​+C​

由上得出:

C = − 2 π C=-2\sqrt{\pi} C=−2π

则最初需要解决的积分:

I ( t = 1 ) = ∫ − ∞ + ∞ e − x 2 sin ⁡ 2 ( x 2 ) x 2 d x = 2 π I m [ i ( 1 − 2 i ) 1 / 2 ] − 2 π \begin{aligned} I(t=1) &=\int_{-\infty}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}(1-2\mathrm{i})^{1/2}\right]-2\sqrt{\pi}\\ \end{aligned} I(t=1)​=∫−∞+∞​x2e−x2sin2(x2)​dx=2π ​Im[i(1−2i)1/2]−2π ​​

设:

z = 1 − 2 i z=1-2\mathrm{i} z=1−2i

则:

∣ z ∣ = 1 2 + 2 2 = 5 A r g z = tan ⁡ − 1 ( − 2 1 ) = − tan ⁡ − 1 ( 2 ) \left|z\right|=\sqrt{1^{2}+2^{2}}=\sqrt{5}\\ \mathrm{Arg}\ z=\tan^{-1}\left(\frac{-2}{1}\right)=-\tan^{-1}(2) ∣z∣=12+22 ​=5 ​Arg z=tan−1(1−2​)=−tan−1(2)

所以:

z = 1 − 2 i = 5 e − i tan ⁡ − 1 ( 2 ) z=1-2\mathrm{i}=\sqrt{5}e^{-\mathrm{i}\tan^{-1}(2)} z=1−2i=5 ​e−itan−1(2)

所以:

1 − 2 i = 5 e − i tan ⁡ − 1 ( 2 ) 2 \sqrt{1-2\mathrm{i}}=\sqrt{\sqrt{5}}e^{-\mathrm{i}\frac{\tan^{-1}(2)}{2}} 1−2i ​=5 ​e−i2tan−1(2)​

所以:

I m [ i 1 − 2 i ] = I m [ i 5 e − i tan ⁡ − 1 ( 2 ) 2 ] = 5 cos ⁡ ( tan ⁡ − 1 ( 2 ) 2 ) \begin{aligned} \mathrm{Im}\left[ \mathrm{i}\sqrt{1-2\mathrm{i}}\right] &=\mathrm{Im}\left[ \mathrm{i}\sqrt{\sqrt{5}}e^{-\mathrm{i}\frac{\tan^{-1}(2)}{2}}\right]\\ &=\sqrt{\sqrt{5}}\cos\left(\frac{\tan^{-1}(2)}{2}\right) \end{aligned} Im[i1−2i ​]​=Im[i5 ​e−i2tan−1(2)​]=5 ​cos(2tan−1(2)​)​

所以:

I ( 1 ) = 2 π 5 cos ⁡ ( tan ⁡ − 1 ( 2 ) 2 ) − 2 π = 2 π 5 1 + 5 2 5 − 2 π = 2 π 1 + 5 2 − 2 π = 2 π ( 1 + 5 2 − 1 ) \begin{aligned} I(1) &=2\sqrt{\pi}\sqrt{\sqrt{5}}\cos\left(\frac{\tan^{-1}(2)}{2}\right)-2\sqrt{\pi}\\ &=2\sqrt{\pi}\sqrt{\sqrt{5}}\sqrt{\frac{1+\sqrt{5}}{2\sqrt{5}}}-2\sqrt{\pi}\\ &=2\sqrt{\pi}\sqrt{\frac{1+\sqrt{5}}{2}}-2\sqrt{\pi}\\ &=2\sqrt{\pi}\left(\sqrt{\frac{1+\sqrt{5}}{2}}-1\right)\\ \end{aligned} I(1)​=2π ​5 ​cos(2tan−1(2)​)−2π ​=2π ​5 ​25 ​1+5 ​​ ​−2π ​=2π ​21+5 ​​ ​−2π ​=2π ​21+5 ​​ ​−1 ​​


  • 参考文献

A beautiful calculus result: solution using Feynman’s technique

更多推荐

Integration using Feynman technique

本文发布于:2023-06-30 14:18:01,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/961708.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:Integration   Feynman   technique

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!