数字图像与机器视觉基础补充

编程入门 行业动态 更新时间:2024-10-08 22:10:36

数字图像与机器<a href=https://www.elefans.com/category/jswz/34/1769927.html style=视觉基础补充"/>

数字图像与机器视觉基础补充

一:位图文件:

什么是位图:计算机能以位图和矢量图格式显示图像。

位图简介:图像又称点阵图或光栅图,它使用我们称为像素(象素,Pixel)的一格一格的小点来描述图像。计算机屏幕其实就是一张包含大量像素点的网格。当我们把位图放大时,每一个像素小点看上去就像是一个个马赛克色块。

矢量图(Vector):

使用直线和曲线来描述图形,这些图形的元素是一些点、线、矩形、多边形、圆和弧线等等,它们都是通过数学公式计算获得的。

位图和矢量图最简单的区别就是:矢量图可以无限放大,而且不会失真;而位图则不能。

像Photoshop(PS)这样主要用于处理位图的软件,我们称之为图像处理软件;专门处理矢量图的软件,我们称之为图形设计软件,例如Adobe Illustrator,CorelDRAW,Flash MX等。

BMP位图文件:

常见的图像文件格式有:BMP、JPG(JPE,JPEG)、GIF等。

BMP图像文件(Bitmap-File)格式是Windows采用的图像文件存储格式,在Windows环境下运行的所有图像处理软件都支持这种格式。Windows 3.0以后的BMP文件都是指设备无关位图(DIB,device-independent bitmap)。BMP位图文件默认的文件扩展名是.BMP,有时它也会以.DIB或.RLE作扩展名。

图片的转换:

单色位图:

 16色位图:

 256色位图:

二、用奇异值分解(SVD)对一张图片进行特征值提起(降维)处理 

代码展示:

import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib as mpl
from pprint import pprintdef restore1(sigma, u, v, K):  # 奇异值、左特征向量、右特征向量m = len(u)n = len(v[0])a = np.zeros((m, n))for k in range(K):uk = u[:, k].reshape(m, 1)vk = v[k].reshape(1, n)a += sigma[k] * np.dot(uk, vk)a[a < 0] = 0a[a > 255] = 255# a = a.clip(0, 255)return np.rint(a).astype('uint8')def restore2(sigma, u, v, K):  # 奇异值、左特征向量、右特征向量m = len(u)n = len(v[0])a = np.zeros((m, n))for k in range(K+1):for i in range(m):a[i] += sigma[k] * u[i][k] * v[k]a[a < 0] = 0a[a > 255] = 255return np.rint(a).astype('uint8')if __name__ == "__main__":A = Image.open("E:\\Ai\\ImagePerch\\lena.jpg", 'r')print(A)output_path = r'./SVD_Output'if not os.path.exists(output_path):os.mkdir(output_path)a = np.array(A)print(a.shape)K = 50u_r, sigma_r, v_r = np.linalg.svd(a[:, :, 0])u_g, sigma_g, v_g = np.linalg.svd(a[:, :, 1])u_b, sigma_b, v_b = np.linalg.svd(a[:, :, 2])plt.figure(figsize=(11, 9), facecolor='w')mpl.rcParams['font.sans-serif'] = ['simHei']mpl.rcParams['axes.unicode_minus'] = Falsefor k in range(1, K+1):print(k)R = restore1(sigma_r, u_r, v_r, k)G = restore1(sigma_g, u_g, v_g, k)B = restore1(sigma_b, u_b, v_b, k)I = np.stack((R, G, B), axis=2)Image.fromarray(I).save('%s\\svd_%d.png' % (output_path, k))if k <= 12:plt.subplot(3, 4, k)plt.imshow(I)plt.axis('off')plt.title('奇异值个数:%d' % k)plt.suptitle('SVD与图像分解', fontsize=20)plt.tight_layout()# plt.subplots_adjust(top=0.9)plt.show()

运行结果:

三、开闭运算检测图像中硬币和细胞的个数 

1.读取图片:

import cv2
import numpy as np
#读取一张硬币图像
img=cv2.imread("E:\\Ai\\ImagePerch\\bin.png")

2.转为灰度图片:

#灰度
img_1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

3.二值化:

#二值化
ret, img_2 = cv2.threshold(img_1, 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)

 4.腐蚀,膨胀:

#二值化
ret, img_2 = cv2.threshold(img_1, 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
 

 5.程序实现:

import cv2
import numpy as npdef stackImages(scale, imgArray):"""将多张图像压入同一个窗口显示:param scale:float类型,输出图像显示百分比,控制缩放比例,0.5=图像分辨率缩小一半:param imgArray:元组嵌套列表,需要排列的图像矩阵:return:输出图像"""rows = len(imgArray)cols = len(imgArray[0])rowsAvailable = isinstance(imgArray[0], list)width = imgArray[0][0].shape[1]height = imgArray[0][0].shape[0]if rowsAvailable:for x in range(0, rows):for y in range(0, cols):if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)else:imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),None, scale, scale)if len(imgArray[x][y].shape) == 2: imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)imageBlank = np.zeros((height, width, 3), np.uint8)hor = [imageBlank] * rowshor_con = [imageBlank] * rowsfor x in range(0, rows):hor[x] = np.hstack(imgArray[x])ver = np.vstack(hor)else:for x in range(0, rows):if imgArray[x].shape[:2] == imgArray[0].shape[:2]:imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)else:imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)hor = np.hstack(imgArray)ver = horreturn ver#读取图片
src = cv2.imread("E:\\Ai\\ImagePerch\\bin.png")
img = src.copy()#灰度
img_1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#二值化
ret, img_2 = cv2.threshold(img_1, 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)#腐蚀
kernel = np.ones((20, 20), int)
img_3 = cv2.erode(img_2, kernel, iterations=1)#膨胀
kernel = np.ones((3, 3), int)
img_4 = cv2.dilate(img_3, kernel, iterations=1)#找到硬币中心
#1)8位图像   2)轮廓查找模式    3)查找近似方法
contours, hierarchy = cv2.findContours(img_4, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2:]#标识硬币
#绘制硬币中心(轮廓绘制)drawContours()参数含义:1)原图     2)轮廓点坐标   3)轮廓索引    4)线条颜色  5)线条粗细
cv2.drawContours(img, contours, -1, (0, 0, 255), 5)#显示图片
cv2.putText(img, "count:{}".format(len(contours)), (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(src, "src", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_1, "gray", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_2, "thresh", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_3, "erode", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
cv2.putText(img_4, "dilate", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 3)
imgStack = stackImages(1, ([src, img_1, img_2], [img_3, img_4, img]))
cv2.imshow("imgStack", imgStack)
cv2.waitKey(0)

结果:

2. 细胞 

def stackImages(scale, imgArray):"""将多张图像压入同一个窗口显示:param scale:float类型,输出图像显示百分比,控制缩放比例,0.5=图像分辨率缩小一半:param imgArray:元组嵌套列表,需要排列的图像矩阵:return:输出图像"""rows = len(imgArray)cols = len(imgArray[0])rowsAvailable = isinstance(imgArray[0], list)width = imgArray[0][0].shape[1]height = imgArray[0][0].shape[0]if rowsAvailable:for x in range(0, rows):for y in range(0, cols):if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)else:imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),None, scale, scale)if len(imgArray[x][y].shape) == 2: imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)imageBlank = np.zeros((height, width, 3), np.uint8)hor = [imageBlank] * rowshor_con = [imageBlank] * rowsfor x in range(0, rows):hor[x] = np.hstack(imgArray[x])ver = np.vstack(hor)else:for x in range(0, rows):if imgArray[x].shape[:2] == imgArray[0].shape[:2]:imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)else:imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)hor = np.hstack(imgArray)ver = horreturn ver

运行结果:

 四、采用图像梯度、开闭、轮廓运算等,对图片中的条形码定位提取、获取字符

代码:

import cv2
import pyzbar.pyzbar as pyzbar
import numpy
from PIL import Image, ImageDraw, ImageFontdef decodeDisplay(img_path):img_data = cv2.imread(img_path)# 转为灰度图像gray = cv2.cvtColor(img_data, cv2.COLOR_BGR2GRAY)barcodes = pyzbar.decode(gray)for barcode in barcodes:# 提取条形码的边界框的位置# 画出图像中条形码的边界框(x, y, w, h) = barcode.rectcv2.rectangle(img_data, (x, y), (x + w, y + h), (0, 255, 0), 2)# 条形码数据为字节对象,所以如果我们想在输出图像上# 画出来,就需要先将它转换成字符串barcodeData = barcode.data.decode("utf-8")barcodeType = barcode.type#不能显示中文# 绘出图像上条形码的数据和条形码类型#text = "{} ({})".format(barcodeData, barcodeType)#cv2.putText(imagex1, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX,5, (0, 0, 125), 2)#更换为:img_PIL = Image.fromarray(cv2.cvtColor(img_data, cv2.COLOR_BGR2RGB))# 参数(字体,默认大小)font = ImageFont.truetype('msyh.ttc', 35)# 字体颜色(rgb)fillColor = (0, 255, 255)# 文字输出位置position = (x, y-50)# 输出内容str = barcodeData# 需要先把输出的中文字符转换成Unicode编码形式(  str.decode("utf-8)   )draw = ImageDraw.Draw(img_PIL)draw.text(position, str, font=font, fill=fillColor)# 使用PIL中的save方法保存图片到本地img_PIL.save('E:\\Ai\\ImagePerch\\1.jpg', 'jpeg')# 向终端打印条形码数据和条形码类型print("{0}: {1}".format(barcodeType, barcodeData))if __name__ == '__main__':decodeDisplay("E:\\Ai\\ImagePerch\\black.png")

更多推荐

数字图像与机器视觉基础补充

本文发布于:2024-02-14 14:58:38,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1763678.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:视觉   机器   数字图像   基础

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!