信用卡欺诈行为逻辑回归数据分析

编程入门 行业动态 更新时间:2024-10-05 07:23:58

<a href=https://www.elefans.com/category/jswz/34/1747394.html style=信用卡欺诈行为逻辑回归数据分析"/>

信用卡欺诈行为逻辑回归数据分析

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq,如有任何学术交流,可随时联系。

1 信用卡欺诈行为案例集预处理

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inlinedata = pd.read_csv("creditcard.csv")
data.head()

from sklearn.preprocessing import StandardScaler
data['normAmount'] = StandardScaler().fit_transform(data['Amount']..values.reshape(-1, 1))
data = data.drop(['Time','Amount'],axis=1)
data.head()

2 K折交叉验证

    def printing_Kfold_scores(x_train_data, y_train_data):fold = KFold(len(y_train_data),5,shuffle=False) # Different C parameters# 0.01 倒数其实是100 # 0.1其实是10c_param_range = [0.01,0.1,1,10,100]results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score'])results_table['C_parameter'] = c_param_range# the k-fold will give 2 lists: train_indices = indices[0], test_indices = indices[1]j = 0for c_param in c_param_range:print('-------------------------------------------')print('C parameter: ', c_param)print('-------------------------------------------')print('')recall_accs = []for iteration, indices in enumerate(fold,start=1):lr = LogisticRegression(C = c_param, penalty = 'l1')]lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel())y_pred_undersample = lr.predict(x_train_data.iloc[indices[1],:].values)recall_acc = recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample)recall_accs.append(recall_acc)print('Iteration ', iteration,': recall score = ', recall_acc)results_table.ix[j,'Mean recall score'] = np.mean(recall_accs)j += 1print('')print('Mean recall score ', np.mean(recall_accs))print('')best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter']# Finally, we can check which C parameter is the best amongst the chosen.print('*********************************************************************************')print('Best model to choose from cross validation is with C parameter = ', best_c)print('*********************************************************************************')return best_c  

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq,如有任何学术交流,可随时联系。

3 不均衡问题处理策略(OverSample与UnderSample)

    # 找出非class列X = data.ix[:, data.columns != 'Class']# 找出class列y = data.ix[:, data.columns == 'Class']# 找出欺诈的个数和索引492number_records_fraud = len(data[data.Class == 1])fraud_indices = np.array(data[data.Class == 1].index)# Picking the indices of the normal classes(找出正常的索引)normal_indices = data[data.Class == 0].index# Out of the indices we picked, randomly select "x" number (number_records_fraud)(从正常的行为中选择接近欺诈的样本索引)492random_normal_indices = np.random.choice(normal_indices, number_records_fraud, replace = False)random_normal_indices = np.array(random_normal_indices)# Appending the 2 indices(索引组合) 892under_sample_indices = np.concatenate([fraud_indices,random_normal_indices])# iloc通过行号获取行数据under_sample_data = data.iloc[under_sample_indices,:]X_undersample = under_sample_data.ix[:, under_sample_data.columns != 'Class']y_undersample = under_sample_data.ix[:, under_sample_data.columns == 'Class']# Showing ratioprint("Percentage of normal transactions: ", len(under_sample_data[under_sample_data.Class == 0])/len(under_sample_data))print("Percentage of fraud transactions: ", len(under_sample_data[under_sample_data.Class == 1])/len(under_sample_data))print("Total number of transactions in resampled data: ", len(under_sample_data))Percentage of normal transactions:  0.5Percentage of fraud transactions:  0.5Total number of transactions in resampled data:  984

4 训练集与测试集划分

    from sklearn.cross_validation import train_test_splitX特征输入,y表示label,test_size划分的测试集比例,没有设置random_state,每次取得的结果就不一样,它的随机数种子与当前系统时间有关。其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到随机数组是一样的。但填0或不填,每次都不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。全部样本拆分X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0)print("Number transactions train dataset: ", len(X_train))print("Number transactions test dataset: ", len(X_test))print("Total number of transactions: ", len(X_train)+len(X_test))Number transactions train dataset:  199364Number transactions test dataset:  85443Total number of transactions:  284807# Undersampled dataset X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = train_test_split(X_undersample , y_undersample, test_size = 0.3, random_state = 0)print("")print("Number transactions train dataset: ", len(X_train_undersample))print("Number transactions test dataset: ", len(X_test_undersample))print("Total number of transactions: ", len(X_train_undersample)+len(X_test_undersample))Number transactions train dataset:  688Number transactions test dataset:  296Total number of transactions:  984

5基于低采样数据集X_test_undersample模型训练与测试(均衡数据)

#Recall = TP/(TP+FN)
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import KFold, cross_val_score
from sklearn.metrics import confusion_matrix,recall_score,classification_report 函数调用best_c = printing_Kfold_scores(X_train_undersample,y_train_undersample)-------------------------------------------
C parameter:  0.01
-------------------------------------------Iteration  1 : recall score =  0.958904109589
Iteration  2 : recall score =  0.917808219178
Iteration  3 : recall score =  1.0
Iteration  4 : recall score =  0.972972972973
Iteration  5 : recall score =  0.954545454545Mean recall score  0.960846151257-------------------------------------------
C parameter:  0.1
-------------------------------------------Iteration  1 : recall score =  0.835616438356
Iteration  2 : recall score =  0.86301369863
Iteration  3 : recall score =  0.915254237288
Iteration  4 : recall score =  0.932432432432
Iteration  5 : recall score =  0.878787878788Mean recall score  0.885020937099-------------------------------------------
C parameter:  1
-------------------------------------------Iteration  1 : recall score =  0.835616438356
Iteration  2 : recall score =  0.86301369863
Iteration  3 : recall score =  0.966101694915
Iteration  4 : recall score =  0.945945945946
Iteration  5 : recall score =  0.893939393939Mean recall score  0.900923434357-------------------------------------------
C parameter:  10
-------------------------------------------Iteration  1 : recall score =  0.849315068493
Iteration  2 : recall score =  0.86301369863
Iteration  3 : recall score =  0.966101694915
Iteration  4 : recall score =  0.959459459459
Iteration  5 : recall score =  0.893939393939Mean recall score  0.906365863087-------------------------------------------
C parameter:  100
-------------------------------------------Iteration  1 : recall score =  0.86301369863
Iteration  2 : recall score =  0.86301369863
Iteration  3 : recall score =  0.966101694915
Iteration  4 : recall score =  0.959459459459
Iteration  5 : recall score =  0.893939393939Mean recall score  0.909105589115*********************************************************************************
Best model to choose from cross validation is with C parameter =  0.01
*********************************************************************************

5 混合矩阵

  def plot_confusion_matrix(cm, classes,title='Confusion matrix',cmap=plt.cm.Blues):"""This function prints and plots the confusion matrix."""plt.imshow(cm, interpolation='nearest', cmap=cmap)plt.title(title)plt.colorbar()tick_marks = np.arange(len(classes))plt.xticks(tick_marks, classes, rotation=0)plt.yticks(tick_marks, classes)thresh = cm.max() / 2.for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):plt.text(j, i, cm[i, j],horizontalalignment="center",color="white" if cm[i, j] > thresh else "black")plt.tight_layout()plt.ylabel('True label')plt.xlabel('Predicted label')

6 混合矩阵作用于低采样数据集X_test_undersample的展示

    import itertoolslr = LogisticRegression(C = best_c, penalty = 'l1')lr.fit(X_train_undersample,y_train_undersample.values.ravel())y_pred_undersample = lr.predict(X_test_undersample.values)# Compute confusion matrixcnf_matrix = confusion_matrix(y_test_undersample,y_pred_undersample)np.set_printoptions(precision=2)print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))# Plot non-normalized confusion matrixclass_names = [0,1]plt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix')plt.show()

7 混合矩阵作用于全数据集X_test.values的展示

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq,如有任何学术交流,可随时联系。

    lr = LogisticRegression(C = best_c, penalty = 'l1')lr.fit(X_train_undersample,y_train_undersample.values.ravel())y_pred = lr.predict(X_test.values)# Compute confusion matrixcnf_matrix = confusion_matrix(y_test,y_pred)np.set_printoptions(precision=2)print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))# Plot non-normalized confusion matrixclass_names = [0,1]plt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix')plt.show()

8 基于全数据集进行k折交叉验证(不均衡数据)

8.1 全数据集进行k折交叉验证

best_c = printing_Kfold_scores(X_train,y_train)
-------------------------------------------
C parameter:  0.01
-------------------------------------------Iteration  1 : recall score =  0.492537313433
Iteration  2 : recall score =  0.602739726027
Iteration  3 : recall score =  0.683333333333
Iteration  4 : recall score =  0.569230769231
Iteration  5 : recall score =  0.45Mean recall score  0.559568228405-------------------------------------------
C parameter:  0.1
-------------------------------------------Iteration  1 : recall score =  0.567164179104
Iteration  2 : recall score =  0.616438356164
Iteration  3 : recall score =  0.683333333333
Iteration  4 : recall score =  0.584615384615
Iteration  5 : recall score =  0.525Mean recall score  0.595310250644-------------------------------------------
C parameter:  1
-------------------------------------------Iteration  1 : recall score =  0.55223880597
Iteration  2 : recall score =  0.616438356164
Iteration  3 : recall score =  0.716666666667
Iteration  4 : recall score =  0.615384615385
Iteration  5 : recall score =  0.5625Mean recall score  0.612645688837-------------------------------------------
C parameter:  10
-------------------------------------------Iteration  1 : recall score =  0.55223880597
Iteration  2 : recall score =  0.616438356164
Iteration  3 : recall score =  0.733333333333
Iteration  4 : recall score =  0.615384615385
Iteration  5 : recall score =  0.575Mean recall score  0.61847902217-------------------------------------------
C parameter:  100
-------------------------------------------Iteration  1 : recall score =  0.55223880597
Iteration  2 : recall score =  0.616438356164
Iteration  3 : recall score =  0.733333333333
Iteration  4 : recall score =  0.615384615385
Iteration  5 : recall score =  0.575Mean recall score  0.61847902217*********************************************************************************
Best model to choose from cross validation is with C parameter =  10.0
*********************************************************************************

8.2 全数据集混合矩阵

# 不均衡样本偏向于多的样本,误伤率低
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(X_train,y_train.values.ravel())
y_pred_undersample = lr.predict(X_test.values)# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test,y_pred_undersample)
np.set_printoptions(precision=2)print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix')
plt.show()

9 逻辑回归基于阈值进行判断(概率)

lr = LogisticRegression(C = 0.01, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample_proba = lr.predict_proba(X_test_undersample.values)thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]plt.figure(figsize=(10,10))j = 1
for i in thresholds:y_test_predictions_high_recall = y_pred_undersample_proba[:,1] > iplt.subplot(3,3,j)j += 1# Compute confusion matrixcnf_matrix = confusion_matrix(y_test_undersample,y_test_predictions_high_recall)np.set_printoptions(precision=2)print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))# Plot non-normalized confusion matrixclass_names = [0,1]plot_confusion_matrix(cnf_matrix, classes=class_names, title='Threshold >= %s'%i)  Recall metric in the testing dataset:  1.0
Recall metric in the testing dataset:  1.0
Recall metric in the testing dataset:  1.0
Recall metric in the testing dataset:  0.986394557823
Recall metric in the testing dataset:  0.931972789116
Recall metric in the testing dataset:  0.884353741497
Recall metric in the testing dataset:  0.836734693878
Recall metric in the testing dataset:  0.748299319728
Recall metric in the testing dataset:  0.571428571429 

10 基于SMOTE 进行数据预处理

import pandas as pd
from imblearn.over_sampling import SMOTE
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
credit_cards=pd.read_csv('creditcard.csv')columns=credit_cards.columns
# The labels are in the last column ('Class'). Simply remove it to obtain features columns
features_columns=columns.delete(len(columns)-1)features=credit_cards[features_columns]
labels=credit_cards['Class']
features_train, features_test, labels_train, labels_test = train_test_split(features, labels, test_size=0.2, random_state=0)
oversampler=SMOTE(random_state=0)
os_features,os_labels=oversampler.fit_sample(features_train,labels_train)len(os_labels[os_labels==1])
227454os_features = pd.DataFrame(os_features)
os_labels = pd.DataFrame(os_labels)
best_c = printing_Kfold_scores(os_features,os_labels)-------------------------------------------
C parameter:  0.01
-------------------------------------------Iteration  1 : recall score =  0.890322580645
Iteration  2 : recall score =  0.894736842105
Iteration  3 : recall score =  0.968861347792
Iteration  4 : recall score =  0.957595541926
Iteration  5 : recall score =  0.958430881173Mean recall score  0.933989438728-------------------------------------------
C parameter:  0.1
-------------------------------------------Iteration  1 : recall score =  0.890322580645
Iteration  2 : recall score =  0.894736842105
Iteration  3 : recall score =  0.970410534469
Iteration  4 : recall score =  0.959980655302
Iteration  5 : recall score =  0.960178498807Mean recall score  0.935125822266-------------------------------------------
C parameter:  1
-------------------------------------------Iteration  1 : recall score =  0.890322580645
Iteration  2 : recall score =  0.894736842105
Iteration  3 : recall score =  0.970454796946
Iteration  4 : recall score =  0.96014552489
Iteration  5 : recall score =  0.960596168431Mean recall score  0.935251182603-------------------------------------------
C parameter:  10
-------------------------------------------Iteration  1 : recall score =  0.890322580645
Iteration  2 : recall score =  0.894736842105
Iteration  3 : recall score =  0.97065397809
Iteration  4 : recall score =  0.960343368396
Iteration  5 : recall score =  0.960530220596Mean recall score  0.935317397966-------------------------------------------
C parameter:  100
-------------------------------------------Iteration  1 : recall score =  0.890322580645
Iteration  2 : recall score =  0.894736842105
Iteration  3 : recall score =  0.970543321899
Iteration  4 : recall score =  0.960211472725
Iteration  5 : recall score =  0.960903924995Mean recall score  0.935343628474*********************************************************************************
Best model to choose from cross validation is with C parameter =  100.0
*********************************************************************************lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(os_features,os_labels.values.ravel())
y_pred = lr.predict(features_test.values)# Compute confusion matrix
cnf_matrix = confusion_matrix( ,y_pred)
np.set_printoptions(precision=2)print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))# Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix')
plt.show()

11 总结

OverSample与UnderSample对比发现,基于SMOTE,数据的准确率和召回率得到了很大程度的提高。

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。QQ邮箱地址:1120746959@qq,如有任何学术交流,可随时联系。

秦凯新 于深圳 201812081811

更多推荐

信用卡欺诈行为逻辑回归数据分析

本文发布于:2024-02-14 14:00:49,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1763463.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:信用卡   欺诈行为   逻辑   数据

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!