STM32串口USART1接收字符串

编程入门 行业动态 更新时间:2024-10-09 06:27:31

STM32<a href=https://www.elefans.com/category/jswz/34/1769224.html style=串口USART1接收字符串"/>

STM32串口USART1接收字符串

STM32F407ZE开发板实现使用串口USART1接收、发送字符串实例
具体代码及解析如下:

main.c部分

#include <stm32f4xx.h> 
#include "led.h"
#include "ustart.h"
#include <string.h>int main()
{LED_Init();USART1_Init();USART_SendString(USART1, "Hello world!\r\n");while(1){if(Receive_Flag == 1)						//接收数据标志位等于1(接收完毕,停止接收)Receive_Flag = 0;						//接收数据标志位置0(可以开始接收)}
}

ustart.h部分

#ifndef USTART_H
#define USTART_H#include <stm32f4xx.h>
#include <stm32f4xx_usart.h>
#include <stdio.h>
#include "sys.h"extern char USART1_ReceiveData[50];								//接收PC端发送过来的字符
extern int Receive_Flag;void USART1_Init();
void USART_SendString(USART_TypeDef* USARTx, char *DataString);
#endif

ustart.c部分

#include "ustart.h"
#include <string.h>int fputc(int ch, FILE *f) 
{/* 发送一个字节数据到串口 */USART_SendData(USART1, (uint8_t) ch); //程序开始时,会发送一次数据,ch是系统分配的(可能是0),串口会显示大概两个空格的内容/* 等待发送完毕 */while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);return (ch);
}void USART1_Init()
{GPIO_InitTypeDef 	GPIOInit_Struct;USART_InitTypeDef 	USARTInit_Struct;NVIC_InitTypeDef  	USARTNVIC_Struct;//1、使能时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);//2、初始化对应的IO引脚复用为USART1功能RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE);GPIOInit_Struct.GPIO_Pin 	= GPIO_Pin_9 | GPIO_Pin_10;GPIOInit_Struct.GPIO_Mode	= GPIO_Mode_AF;GPIOInit_Struct.GPIO_OType	= GPIO_OType_PP;GPIOInit_Struct.GPIO_Speed 	= GPIO_Fast_Speed;GPIOInit_Struct.GPIO_PuPd	= GPIO_PuPd_UP;GPIO_Init(GPIOA,&GPIOInit_Struct);//将PA9  PA10复用为USART1功能GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_USART1);GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1);//3、USART1初始化USARTInit_Struct.USART_BaudRate 	= 115200; 								//波特率USARTInit_Struct.USART_Parity		= USART_Parity_No;						//无校验位USARTInit_Struct.USART_StopBits		= USART_StopBits_1;						//1位停止位USARTInit_Struct.USART_WordLength	= USART_WordLength_8b;					//8位数据位USARTInit_Struct.USART_Mode			= USART_Mode_Rx | USART_Mode_Tx;		//收发模式USARTInit_Struct.USART_HardwareFlowControl	= USART_HardwareFlowControl_None;//无硬件控制流USART_Init(USART1,&USARTInit_Struct);//开启串口终端USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);USARTNVIC_Struct.NVIC_IRQChannel = USART1_IRQn;//stm32f4xx.hUSARTNVIC_Struct.NVIC_IRQChannelPreemptionPriority = 0;USARTNVIC_Struct.NVIC_IRQChannelSubPriority        = 0;USARTNVIC_Struct.NVIC_IRQChannelCmd	= ENABLE;NVIC_Init(&USARTNVIC_Struct);//4、开启串口USART_Cmd(USART1,ENABLE);
}void USART_SendString(USART_TypeDef* USARTx, char *DataString)
{int i = 0;USART_ClearFlag(USARTx,USART_FLAG_TC);										//发送字符前清空标志位(否则缺失字符串的第一个字符)while(DataString[i] != '\0')												//字符串结束符{USART_SendData(USARTx,DataString[i]);									//每次发送字符串的一个字符while(USART_GetFlagStatus(USARTx,USART_FLAG_TC) == 0);					//等待数据发送成功USART_ClearFlag(USARTx,USART_FLAG_TC);									//发送字符后清空标志位i++;}
}char USART_ReceiveString[50];													//接收PC端发送过来的字符
int Receive_Flag = 0;															//接收消息标志位
int Receive_sum = 0;															//数组下标
void USART1_IRQHandler(void)
{if(USART_GetITStatus(USART1,USART_IT_RXNE) == 1)							//USART_FLAG_RXNE判断数据,== 1则有数据{if(Receive_sum > 49)													//数组能存放50个字节的数据				{USART_ReceiveString[49] = '\0';										//数据字节超过50位时,将最后一位设置为\0	Receive_Flag = 1;													//接收标志位置1,停止接收数据Receive_sum = 0;													//数组下标置0}if(Receive_Flag == 0)													//接收标志位等于0,开始接收数据{USART_ReceiveString[Receive_sum] = USART_ReceiveData(USART1);		//通过USART1串口接收字符Receive_sum++;														//数组下标++}if(Receive_sum >= 2)													//数组下标大于2{if(USART_ReceiveString[Receive_sum-2] == '\r' && USART_ReceiveString[Receive_sum-1] == '\n' ){USART_ReceiveString[Receive_sum-1] = '\0';						USART_ReceiveString[Receive_sum-2] = '\0';Receive_Flag = 1;												//接收标志位置1,停止接收数据Receive_sum = 0;												//数组下标置0printf("%s\r\n",USART_ReceiveString);					if(strcmp(USART_ReceiveString,"hello") == 0){PFout(9) = !PFout(9);}if(strcmp(USART_ReceiveString,"world") == 0){PFout(10) = !PFout(10);}if(strcmp(USART_ReceiveString,"jiajia") == 0){PEout(13) = !PEout(13);}if(strcmp(USART_ReceiveString,"haha") == 0){PEout(14) = !PEout(14);}}		}USART_ClearITPendingBit(USART1,USART_IT_RXNE);							//接收后先清空标志位}
}

led.h部分

#ifndef _LED_H_
#define _LED_H_#include <stm32f4xx.h>
#include "sys.h"void LED_Init(void);#endif

led.c部分

#include "led.h"void LED_Init(void)
{GPIO_InitTypeDef aaa;//1、先开启对应用到的模块时钟节拍RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF,ENABLE);RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE);//PE组时钟//2、可以初始化配置GPIO  F组的9号引脚aaa.GPIO_Pin   = GPIO_Pin_9 | GPIO_Pin_10;aaa.GPIO_Mode  = GPIO_Mode_OUT;//输出模式aaa.GPIO_Speed = GPIO_Fast_Speed;//快速  点灯和引脚速度无关aaa.GPIO_OType = GPIO_OType_PP;//推挽输出aaa.GPIO_PuPd  = GPIO_PuPd_UP;//内部上拉GPIO_Init(GPIOF,&aaa);aaa.GPIO_Pin   = GPIO_Pin_13 | GPIO_Pin_14;GPIO_Init(GPIOE,&aaa);//初始化完成  灭掉4盏灯PFout(9)  = 1;PFout(10) = 1;PEout(13) = 1;PEout(14) = 1;}

sys.h部分

#ifndef __SYS_H
#define __SYS_H	 
#include "stm32f4xx.h" //IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr & 0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum)) 
//IO口地址映射
#define GPIOA_ODR_Addr    (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr    (GPIOB_BASE+20) //0x40020414 
#define GPIOC_ODR_Addr    (GPIOC_BASE+20) //0x40020814 
#define GPIOD_ODR_Addr    (GPIOD_BASE+20) //0x40020C14 
#define GPIOE_ODR_Addr    (GPIOE_BASE+20) //0x40021014 
#define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414    
#define GPIOG_ODR_Addr    (GPIOG_BASE+20) //0x40021814   
#define GPIOH_ODR_Addr    (GPIOH_BASE+20) //0x40021C14    
#define GPIOI_ODR_Addr    (GPIOI_BASE+20) //0x40022014     #define GPIOA_IDR_Addr    (GPIOA_BASE+16) //0x40020010 
#define GPIOB_IDR_Addr    (GPIOB_BASE+16) //0x40020410 
#define GPIOC_IDR_Addr    (GPIOC_BASE+16) //0x40020810 
#define GPIOD_IDR_Addr    (GPIOD_BASE+16) //0x40020C10 
#define GPIOE_IDR_Addr    (GPIOE_BASE+16) //0x40021010 
#define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 
#define GPIOG_IDR_Addr    (GPIOG_BASE+16) //0x40021810 
#define GPIOH_IDR_Addr    (GPIOH_BASE+16) //0x40021C10 
#define GPIOI_IDR_Addr    (GPIOI_BASE+16) //0x40022010 //STM32中  对寄存器的访问  是不能单独访问寄存器的单个bit  只能以32bit地址访问寄存器
//这些位为只写形式,只能在字(word)--4byte、半字2byte 或字节模式下访问 
//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n)   BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PAin(n)    BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 #define PBout(n)   BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
#define PBin(n)    BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 #define PCout(n)   BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
#define PCin(n)    BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 #define PDout(n)   BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
#define PDin(n)    BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 #define PEout(n)   BIT_ADDR(GPIOE_ODR_Addr,n)  //输出 
#define PEin(n)    BIT_ADDR(GPIOE_IDR_Addr,n)  //输入#define PFout(n)   BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PFin(n)    BIT_ADDR(GPIOF_IDR_Addr,n)  //输入#define PGout(n)   BIT_ADDR(GPIOG_ODR_Addr,n)  //输出 
#define PGin(n)    BIT_ADDR(GPIOG_IDR_Addr,n)  //输入#define PHout(n)   BIT_ADDR(GPIOH_ODR_Addr,n)  //输出 
#define PHin(n)    BIT_ADDR(GPIOH_IDR_Addr,n)  //输入#define PIout(n)   BIT_ADDR(GPIOI_ODR_Addr,n)  //输出 
#define PIin(n)    BIT_ADDR(GPIOI_IDR_Addr,n)  //输入#endif

如果这篇文章能帮到你,能否请我喝杯奶茶?(下方打赏)

更多推荐

STM32串口USART1接收字符串

本文发布于:2024-03-23 20:43:20,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1742609.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:串口   字符串

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!