【连续介质力学】张量的谱表示和Cayley

编程入门 行业动态 更新时间:2024-10-22 23:45:40

【连续介质力学】<a href=https://www.elefans.com/category/jswz/34/1765019.html style=张量的谱表示和Cayley"/>

【连续介质力学】张量的谱表示和Cayley

张量的谱表示

基于特征多项式:

如果 T T T 是对称二阶张量,那么有三个实数特征值: T 1 , T 2 , T 3 T_1, T_2, T_3 T1​,T2​,T3​, 对应有特征向量:

主空间由特征向量构成的正交基 n ^ ( 1 ) , n ^ ( 2 ) , n ^ ( 3 ) \hat n^{(1)}, \hat n^{(2)}, \hat n^{(3)} n^(1),n^(2),n^(3) 所张成,张量的分量则由特征值表示:

特征向量形成的变换矩阵 A A A:
T ′ = A T A ′ T' = ATA' T′=ATA′
由于 A − 1 = A T A^{-1} = A^T A−1=AT, 所以:
T = A T T ′ A T = A^TT'A T=ATT′A
其中:

将 T = A T T ′ A T = A^TT'A T=ATT′A,显式表示出来:

其中:

因此,可以将二阶张量的分量用特征值和特征向量的函数表示(谱表示)
T i j = T 1 n ^ i ( 1 ) n ^ j ( 1 ) + T 2 n ^ i ( 2 ) n ^ j ( 2 ) + T 3 n ^ i ( 3 ) n ^ j ( 3 ) T_{ij} = T_1 \hat n_i^{(1)} \hat n_j^{(1)} + T_2 \hat n_i^{(2)} \hat n_j^{(2)}+T_3 \hat n_i^{(3)} \hat n_j^{(3)} Tij​=T1​n^i(1)​n^j(1)​+T2​n^i(2)​n^j(2)​+T3​n^i(3)​n^j(3)​
张量表示:
T = T 1 n ^ ( 1 ) ⨂ n ^ ( 1 ) + T 2 n ^ ( 2 ) ⨂ n ^ ( 2 ) + T 3 n ^ ( 3 ) ⨂ n ^ ( 3 ) T = T_1 \hat n^{(1)}\bigotimes \hat n^{(1)} + T_2 \hat n^{(2)}\bigotimes \hat n^{(2)}+ T_3 \hat n^{(3)}\bigotimes \hat n^{(3)} T=T1​n^(1)⨂n^(1)+T2​n^(2)⨂n^(2)+T3​n^(3)⨂n^(3)

张量可以表示成并矢的线性组合
T = ∑ a = 1 3 T a n ^ ( a ) ⨂ n ^ ( a ) ( 二阶张量的谱表示 ) \boxed{T = \sum_{a=1}^{3}T_a\hat n^{(a)}\bigotimes \hat n^{(a)}} \quad (二阶张量的谱表示) T=a=1∑3​Ta​n^(a)⨂n^(a)​(二阶张量的谱表示)
NOTE: 也可以从定义得到:
因为 1 = n ^ i ⨂ n ^ i 1 = \hat n_i \bigotimes \hat n_i 1=n^i​⨂n^i​, 所以表示成 1 = ∑ a = 1 3 n ^ ( a ) ⨂ n ^ ( a ) 1 = \sum_{a=1}^{3}\hat n^{(a)}\bigotimes \hat n^{(a)} 1=∑a=13​n^(a)⨂n^(a),那么:
T = T ⋅ 1 = T ⋅ ( ∑ a = 1 3 n ^ ( a ) ⨂ n ^ ( a ) ) = ∑ a = 1 3 T ⋅ n ^ ( a ) ⨂ n ^ ( a ) = ∑ a = 1 3 T a n ^ ( a ) ⨂ n ^ ( a ) T = T \cdot 1 = T \cdot ( \sum_{a=1}^{3}\hat n^{(a)}\bigotimes \hat n^{(a)})\\= \sum_{a=1}^{3}T \cdot\hat n^{(a)}\bigotimes \hat n^{(a)}\\=\sum_{a=1}^{3}T_a \hat n^{(a)}\bigotimes \hat n^{(a)} T=T⋅1=T⋅(a=1∑3​n^(a)⨂n^(a))=a=1∑3​T⋅n^(a)⨂n^(a)=a=1∑3​Ta​n^(a)⨂n^(a)

其中,用到了特征值和特征向量的定义: T ⋅ n ^ ( a ) = T a n ^ ( a ) T \cdot\hat n^{(a)} = T_a \hat n^{(a)} T⋅n^(a)=Ta​n^(a)

现在,考虑一个正交张量 R R R,将正交变换作用到一个单位向量 N ^ \hat N N^,得到一个单位向量 n ^ \hat n n^, n ^ = R ⋅ N ^ \hat n = R \cdot \hat N n^=R⋅N^,因此,可以将正交张量 R R R 表示成:
R = R ⋅ 1 = R ⋅ ( ∑ a = 1 3 N ^ ( a ) ⨂ N ^ ( a ) ) = ∑ a = 1 3 R ⋅ N ^ ( a ) ⨂ N ^ ( a ) = ∑ a = 1 3 n ^ ( a ) ⨂ n ^ ( a ) R = R \cdot 1 = R \cdot ( \sum_{a=1}^{3}\hat N^{(a)}\bigotimes \hat N^{(a)})\\= \sum_{a=1}^{3}R \cdot\hat N^{(a)}\bigotimes \hat N^{(a)}\\=\sum_{a=1}^{3}\hat n^{(a)}\bigotimes \hat n^{(a)} R=R⋅1=R⋅(a=1∑3​N^(a)⨂N^(a))=a=1∑3​R⋅N^(a)⨂N^(a)=a=1∑3​n^(a)⨂n^(a)

张量的谱表示在张量代数操作种是非常有用的,比如在主空间的张量的幂可以表示成:

所以 T n T^n Tn 的谱表示为:
T n = ∑ a = 1 3 T a n n ^ ( a ) ⨂ n ^ ( a ) T^n = \sum_{a= 1}^3T_a^n \hat n^{(a)} \bigotimes \hat n^{(a)} Tn=a=1∑3​Tan​n^(a)⨂n^(a)

同样, T \sqrt{T} T ​的谱表示为:
T = ∑ a = 1 3 T a n ^ ( a ) ⨂ n ^ ( a ) \sqrt{T}= \sum_{a= 1}^3\sqrt{T_a} \hat n^{(a)} \bigotimes \hat n^{(a)} T ​=a=1∑3​Ta​ ​n^(a)⨂n^(a)

然后,我们考虑一个正定张量,有正的特征值,条件是: x ^ ⋅ T ⋅ x ^ ≥ 0 \hat x \cdot T \cdot \hat x \geq 0 x^⋅T⋅x^≥0,将此条件转化成谱表示:

x ^ ⋅ T ⋅ x ^ ≥ 0 ⟹ x ^ ⋅ ( ∑ a = 1 3 T a n ^ ( a ) ⨂ n ^ ( a ) ) ⋅ x ^ ≥ 0 ⟹ ∑ a = 1 3 T a x ^ ⋅ n ^ ( a ) ⨂ n ^ ( a ) ⋅ x ^ ≥ 0 ⟹ ∑ a = 1 3 T a [ x ^ ⋅ n ^ ( a ) ] 2 ≥ 0 ⟹ T 1 ( x ^ ⋅ n ^ ( 1 ) ) 2 + T 2 ( x ^ ⋅ n ^ ( 2 ) ) 2 + T 3 ( x ^ ⋅ n ^ ( 3 ) ) 2 ≥ 0 \hat x \cdot T \cdot \hat x \geq 0 \\ \implies \hat x \cdot (\sum_{a= 1}^3T_a \hat n^{(a)} \bigotimes \hat n^{(a)}) \cdot \hat x \geq 0\\ \implies \sum_{a= 1}^3T_a \hat x \cdot \hat n^{(a)} \bigotimes \hat n^{(a)} \cdot \hat x \geq 0 \\ \implies \sum_{a= 1}^3T_a [\hat x \cdot \hat n^{(a)} ]^2\geq 0 \\ \implies T_1(\hat x \cdot \hat n^{(1)})^2+T_2(\hat x \cdot \hat n^{(2)})^2+T_3(\hat x \cdot \hat n^{(3)})^2\geq 0 x^⋅T⋅x^≥0⟹x^⋅(a=1∑3​Ta​n^(a)⨂n^(a))⋅x^≥0⟹a=1∑3​Ta​x^⋅n^(a)⨂n^(a)⋅x^≥0⟹a=1∑3​Ta​[x^⋅n^(a)]2≥0⟹T1​(x^⋅n^(1))2+T2​(x^⋅n^(2))2+T3​(x^⋅n^(3))2≥0

以上表达式在 x ^ ≠ 0 \hat x \neq 0 x^=0才成立

当 x ^ = n ^ \hat x = \hat n x^=n^,上式变成 T 1 ( n ^ ( 1 ) ⋅ n ^ ( 1 ) ) 2 = T 1 ≥ 0 T_1(\hat n^{(1)} \cdot \hat n^{(1)})^2 = T_1 \geq 0 T1​(n^(1)⋅n^(1))2=T1​≥0, 表示当张量是半正定,特征值大于等于0。因此张量是正定的,当且仅当特征值都为正的,不等于0

小结:正定张量的迹大于0,如果正定张量的迹为0,表示张量是个零张量

四阶张量的谱表示
四阶张量 I I II II的定义:

由于 I I II II 是各向同性张量,所以也可以把它表示成任何正交基 n ^ ( a ) \hat n^{(a)} n^(a):
I I = ∑ a = 1 3 ∑ b = 1 3 n ^ ( a ) ⨂ n ^ ( b ) ⨂ n ^ ( a ) ⨂ n ^ ( b ) II = \sum_{a=1}^3 \sum_{b = 1}^3\hat n^{(a)} \bigotimes \hat n^{(b)} \bigotimes \hat n^{(a)} \bigotimes \hat n^{(b)} II=a=1∑3​b=1∑3​n^(a)⨂n^(b)⨂n^(a)⨂n^(b)

同理,可以得到 I I ‾ 和 I I ‾ \overline {II}和 \underline {II} II和II​的谱表示:

问题1.34 W W W是反对称二阶张量, V V V 是正定对称张量,其谱表示为: V = ∑ a = 1 3 λ a n ^ ( a ) ⨂ n ^ ( a ) V = \sum_{a= 1}^3 \lambda_a \hat n^{(a)}\bigotimes \hat n^{(a)} V=∑a=13​λa​n^(a)⨂n^(a),证明: W W W 可以表示成: W = ∑ a , b = 1 , a ≠ b 3 W a b n ^ ( a ) ⨂ n ^ ( b ) W = \sum_{a, b =1, a \neq b}^3 W_{ab}\hat n^{(a)}\bigotimes \hat n^{(b)} W=∑a,b=1,a=b3​Wab​n^(a)⨂n^(b); 且证明: W ⋅ V − V ⋅ W = ∑ a , b = 1 , a ≠ b 3 W a b ( λ b − λ a ) n ^ ( a ) ⨂ n ^ ( b ) W \cdot V - V \cdot W = \sum_{a, b =1, a \neq b}^3 W_{ab}(\lambda_b -\lambda_a)\hat n^{(a)}\bigotimes \hat n^{(b)} W⋅V−V⋅W=∑a,b=1,a=b3​Wab​(λb​−λa​)n^(a)⨂n^(b)


矩阵的谱分解视觉化表示: 谱分解的可视化

Cayley-Hamilton 定理

Cayley-Hamilton 定理: 对于任意张量 T T T,满足特征方程,特征值满足 λ 3 − λ 2 I T + λ I I T − I I I T = 0 \lambda^3 - \lambda^2 I_T + \lambda II_T - III_T=0 λ3−λ2IT​+λIIT​−IIIT​=0,所以张量 T T T:
T 3 − T 2 I T + T I I T − I I I T = 0 T^3 - T^2 I_T +T II_T - III_T=0 T3−T2IT​+TIIT​−IIIT​=0

Cayley-Hamilton 定理的应用:表示张量的幂
T 3 ⋅ T − T 2 ⋅ T I T + T ⋅ T I I T − I I I T 1 ⋅ T = 0 ⟹ T 4 = T 3 I T − T 2 I I T + T I I I T T^3\cdot T - T^2 \cdot TI_T +T \cdot TII_T - III_T 1 \cdot T=0 \\ \implies T^4 = T^3 I_T -T^2 II_T +T III_T T3⋅T−T2⋅TIT​+T⋅TIIT​−IIIT​1⋅T=0⟹T4=T3IT​−T2IIT​+TIIIT​

应用Cayley-Hamilton 定理, 可以将第三不变量表示成迹的函数:
T 3 : 1 − T 2 : 1 I T + T : 1 I I T − I I I T 1 : 1 = 0 : 1 T^3 :1 - T^2:1I_T +T : 1II_T - III_T 1:1=0:1 T3:1−T2:1IT​+T:1IIT​−IIIT​1:1=0:1
由于:
T 3 : 1 = T r ( T 3 ) ; T 2 : 1 = T r ( T 2 ) ; T : 1 = T r ( T ) ; 1 : 1 = T r ( 1 ) = 3 ; 0 : 1 = T r ( 0 ) = 0 T^3 : 1 = Tr(T^3); \\ T^2: 1=Tr(T^2); \\ T:1=Tr(T);\\ 1:1=Tr(1)=3;\\ 0:1=Tr(0) = 0 T3:1=Tr(T3);T2:1=Tr(T2);T:1=Tr(T);1:1=Tr(1)=3;0:1=Tr(0)=0
所以:
T r ( T 3 ) − I T T r ( T 2 ) + I I T T r ( T ) − 3 I I I T = 0 ⟹ I I I T = 1 3 ( T r ( T 3 ) − I T T r ( T 2 ) + I I T T r ( T ) ) Tr(T^3) - I_T Tr(T^2) +II_T Tr(T) - 3III_T =0 \\ \implies III_T = \frac{1}{3}(Tr(T^3) - I_T Tr(T^2) +II_T Tr(T) ) Tr(T3)−IT​Tr(T2)+IIT​Tr(T)−3IIIT​=0⟹IIIT​=31​(Tr(T3)−IT​Tr(T2)+IIT​Tr(T))

将不变量代入:

得到:
I I I T = 1 3 ( T r ( T 3 ) − 3 2 T r ( T 2 ) T r ( T ) + 1 2 [ T r ( T ) ] 3 ) III_T = \frac{1}{3}(Tr(T^3)-\frac{3}{2}Tr(T^2)Tr(T)+\frac{1}{2}[Tr(T)]^3) IIIT​=31​(Tr(T3)−23​Tr(T2)Tr(T)+21​[Tr(T)]3)
指标形式:
I I I T = 1 3 ( T i j T j k T k i − 3 2 T i j T j i T k k + 1 2 T i i T j j T k k ) III_T=\frac{1}{3} (T_{ij}T_{jk}T_{ki}-\frac{3}{2}T_{ij}T_{ji}T_{kk}+\frac{1}{2}T_{ii}T_{jj}T_{kk}) IIIT​=31​(Tij​Tjk​Tki​−23​Tij​Tji​Tkk​+21​Tii​Tjj​Tkk​)

问题1.35 基于Cayley-Hamilton 定理,用张量幂求出张量的逆


n×n矩阵 A n × n A_{n \times n} An×n​,那么特征行列式为:
∣ λ 1 n × n − A ∣ = 0 |\lambda 1_{n\times n}-A|=0 ∣λ1n×n​−A∣=0
展开,得:
λ n − I 1 λ n − 1 + I 2 λ n − 2 − . . . ( − 1 ) n I n = 0 \lambda^n -I_1\lambda^{n-1}+I_2\lambda^{n-2}- ... (-1)^nI_n=0 λn−I1​λn−1+I2​λn−2−...(−1)nIn​=0
其中 I 1 , I 2 , . . . , I n I_1, I_2, ..., I_n I1​,I2​,...,In​是A的不变量,n=3是二阶张量的情况

应用Cayley-Hamilton 定理,
A n − I 1 A n − 1 + I 2 A n − 2 − . . . + ( − 1 ) n I n 1 = 0 A^n-I_1A^{n-1}+I_2A^{n-2}-...+(-1)^nI_n 1=0 An−I1​An−1+I2​An−2−...+(−1)nIn​1=0
通过乘以 A − 1 A^{-1} A−1,可以得到:
A n A − 1 − I 1 A n − 1 A − 1 + I 2 A n − 2 A − 1 − . . . + ( − 1 ) n I n 1 A − 1 = 0 ⟹ A n − 1 − I 1 A n − 2 + I 2 A n − 3 − . . . + ( − 1 ) n − 1 I n − 1 1 + ( − 1 ) n I n A − 1 = 0 A^nA^{-1}-I_1A^{n-1}A^{-1}+I_2A^{n-2}A^{-1}-...+(-1)^nI_n 1A^{-1}=0 \\ \implies A^{n-1}-I_1A^{n-2}+I_2A^{n-3}-...+(-1)^{n-1}I_{n-1} 1 +(-1)^nI_nA^{-1}=0 AnA−1−I1​An−1A−1+I2​An−2A−1−...+(−1)nIn​1A−1=0⟹An−1−I1​An−2+I2​An−3−...+(−1)n−1In−1​1+(−1)nIn​A−1=0

那么:
A − 1 = ( − 1 ) n − 1 I n ( A n − 1 − I 1 A n − 2 + I 2 A n − 3 − . . . + ( − 1 ) n − 1 I n − 1 1 ) A^{-1}= \frac{(-1)^{n-1}}{I_n}(A^{n-1}-I_1A^{n-2}+I_2A^{n-3}-...+(-1)^{n-1}I_{n-1} 1 ) A−1=In​(−1)n−1​(An−1−I1​An−2+I2​An−3−...+(−1)n−1In−1​1)
只有当 I n = det ⁡ A ≠ 0 I_n = \det A \neq 0 In​=detA=0, A − 1 A^{-1} A−1才存在

问题1.36 验证Cayley-Hamilton 定理

参考教材:
Eduardo W.V. Chaves, Notes On Continuum Mechanics

更多推荐

【连续介质力学】张量的谱表示和Cayley

本文发布于:2024-03-23 17:02:59,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1740648.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:谱表   张量   力学   介质   Cayley

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!