目标检测算法——深度学习知识简要普及

编程入门 行业动态 更新时间:2024-10-25 22:36:16

目标检测算法——深度学习知识<a href=https://www.elefans.com/category/jswz/34/1755657.html style=简要普及"/>

目标检测算法——深度学习知识简要普及

深度学习Tricks,第一时间送达

目录

一、前言

深度学习、机器学习、人工智能的关系

二、深度学习概念

1、深度学习定义

2、深度学习应用

3、深度学习优缺点

三、深度学习典型算法

1、卷积神经网络 - CNN

2、循环神经网络 - RNN

3、生成对抗网络 - GANs

4、深度强化学习 - RL


深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:

(1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)。

(2)基于多层神经元的自编码神经网络,包括自编码( Auto encoder)以及近年来受到广泛关注的稀疏编码两类( Sparse Coding)。

(3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。

通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation learning)。 

以往在机器学习用于现实任务时,描述样本的特征通常需由人类专家来设计,这成为“特征工程”(feature engineering)。众所周知,特征的好坏对泛化性能有至关重要的影响,人类专家设计出好特征也并非易事;特征学习(表征学习)则通过机器学习技术自身来产生好特征,这使机器学习向“全自动数据分析”又前进了一步。

近年来,研究人员也逐渐将这几类方法结合起来,如对原本是以有监督学习为基础的卷积神经网络结合自编码神经网络进行无监督的预训练,进而利用鉴别信息微调网络参数形成的卷积深度置信网络。与传统的学习方法相比,深度学习方法预设了更多的模型参数,因此模型训练难度更大,根据统计学习的一般规律知道,模型参数越多,需要参与训练的数据量也越大。

20世纪八九十年代由于计算机计算能力有限和相关技术的限制,可用于分析的数据量太小,深度学习在模式分析中并没有表现出优异的识别性能。自从2006年, Hinton等提出快速计算受限玻耳兹曼机(RBM)网络权值及偏差的CD-K算法以后,RBM就成了增加神经网络深度的有力工具,导致后面使用广泛的DBN(由 Hinton等开发并已被微软等公司用于语音识别中)等深度网络的出现。与此同时,稀疏编码等由于能自动从数据中提取特征也被应用于深度学习中。基于局部数据区域的卷积神经网络方法今年来也被大量研究

一、前言

深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。

1950年代出现的感知机可以说是人工神经网络的开端。此后,人工神经网络研究在 1960 年代得到了积极的开展。然而,在 1969 年,一本名为《感知器》的书出版了,它揭示了感知器的致命局限性并包含了证明。然后,在 1970 年代,我们进入了一个黑暗时代,人工神经网络被许多学者所忽视。

1980年代,人工神经网络研究再次开始受到关注。这可以归因于这样一个事实,即在 1986 年设计了一种通过应用误差反向传播来学习多层人工神经网络的方法。在这个时代,深度神经网络 (DNN)、循环神经网络 (RNN) 和卷积神经网络 (CNN) 得到了发展。

在 1990 年代,出现了高级形式的人工神经网络。1997 年发布了高级循环神经网络 LSTM,1998 年发布了高级卷积神经网络 LeNet-5。

2000 年代,人工神经网络以深度学习的名义开始受到关注。知名信息技术研究机构 Gartner 将深度学习列为十大战略技术。

2010 年代,谷歌的 Deep Mind 发布了著名的 AlphaGo。此后,深度学习在韩国受到了爆炸式的关注。

作为机器学习最重要的一个分支,深度学习近年来发展迅猛,在国内外都引起了广泛的关注。目前大部分表现优异的应用都用到了深度学习,引领了第三次人工智能的浪潮。

深度学习、机器学习、人工智能的关系

从上图可以看出:深度学习是机器学习的一个分支(最重要的分支),机器学习是人工智能的一个分支。

二、深度学习概念

1、深度学习定义

深度学习定义:一般是指通过训练多层网络结构对未知数据进行分类或回归

深度学习分类:有监督学习方法——深度前馈网络、卷积神经网络、循环神经网络等;

                         无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。

深度学习的思想:

深度神经网络的基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层的高层次特征来表示数据的抽象语义信息,获得更好的特征鲁棒性。
 

2、深度学习应用

图像处理领域主要应用

图像分类(物体识别):整幅图像的分类或识别
物体检测:检测图像中物体的位置进而识别物体
图像分割:对图像中的特定物体按边缘进行分割
图像回归:预测图像中物体组成部分的坐标

语音识别领域主要应用

语音识别:将语音识别为文字
声纹识别:识别是哪个人的声音
语音合成:根据文字合成特定人的语音

自然语言处理领域主要应用

语言模型:根据之前词预测下一个单词。
情感分析:分析文本体现的情感(正负向、正负中或多态度类型)。
神经机器翻译:基于统计语言模型的多语种互译。
神经自动摘要:根据文本自动生成摘要。
机器阅读理解:通过阅读文本回答问题、完成选择题或完型填空。
自然语言推理:根据一句话(前提)推理出另一句话(结论)。

综合应用

图像描述:根据图像给出图像的描述句子
可视问答:根据图像或视频回答问题
图像生成:根据文本描述生成图像
视频生成:根据故事自动生成视频
 

3、深度学习优缺点

优点1:学习能力强

从结果来看,深度学习的表现非常好,他的学习能力非常强。

优点2:覆盖范围广,适应性好

深度学习的神经网络层数很多,宽度很广,理论上可以映射到任意函数,所以能解决很复杂的问题。

优点3:数据驱动,上限高

深度学习高度依赖数据,数据量越大,他的表现就越好。在图像识别、面部识别、NLP 等部分任务甚至已经超过了人类的表现。同时还可以通过调参进一步提高他的上限。

优点4:可移植性好

由于深度学习的优异表现,有很多框架可以使用,例如 TensorFlow、Pytorch。这些框架可以兼容很多平台。

缺点1:计算量大,便携性差

深度学习需要大量的数据很大量的算力,所以成本很高。并且现在很多应用还不适合在移动设备上使用。目前已经有很多公司和团队在研发针对便携设备的芯片。这个问题未来会得到解决。

缺点2:硬件需求高

深度学习对算力要求很高,普通的 CPU 已经无法满足深度学习的要求。主流的算力都是使用 GPU 和 TPU,所以对于硬件的要求很高,成本也很高。

缺点3:模型设计复杂

深度学习的模型设计非常复杂,需要投入大量的人力物力和时间来开发新的算法和模型。大部分人只能使用现成的模型。

缺点4:没有"人性",容易存在偏见

由于深度学习依赖数据,并且可解释性不高。在训练数据不平衡的情况下会出现性别歧视、种族歧视等问题。

三、深度学习典型算法

1、卷积神经网络 - CNN

CNN 的价值:能够将大数据量的图片有效的降维成小数据量(并不影响结果),能够保留图片的特征,类似人类的视觉原理。

CNN 的基本原理:

卷积层 – 主要作用是保留图片的特征
池化层 – 主要作用是把数据降维,可以有效的避免过拟合
全连接层 – 根据不同任务输出我们想要的结果

CNN 的实际应用:图片分类、检索;目标定位检测;目标分割;人脸识别;骨骼识别
 

2、循环神经网络 - RNN

RNN 是一种能有效的处理序列数据的算法。比如:文章内容、语音音频、股票价格走势…之所以他能处理序列数据,是因为在序列中前面的输入也会影响到后面的输出,相当于有了“记忆功能”。但是 RNN 存在严重的短期记忆问题,长期的数据影响很小(哪怕他是重要的信息)。于是基于 RNN 出现了 LSTM 和 GRU 等变种算法。这些变种算法主要有几个特点:长期信息可以有效的保留;挑选重要信息保留,不重要的信息会选择“遗忘”。

RNN 几个典型的应用如下:文本生成;语音识别;机器翻译;生成图像描述;视频标记
 

3、生成对抗网络 - GANs

假设一个城市治安混乱,很快,这个城市里就会出现无数的小偷。在这些小偷中,有的可能是盗窃高手,有的可能毫无技术可言。假如这个城市开始整饬其治安,突然开展一场打击犯罪的「运动」,警察们开始恢复城市中的巡逻,很快,一批「学艺不精」的小偷就被捉住了。之所以捉住的是那些没有技术含量的小偷,是因为警察们的技术也不行了,在捉住一批低端小偷后,城市的治安水平变得怎样倒还不好说,但很明显,城市里小偷们的平均水平已经大大提高了。

4、深度强化学习 - RL

强化学习算法的思路非常简单,以游戏为例,如果在游戏中采取某种策略可以取得较高的得分,那么就进一步「强化」这种策略,以期继续取得较好的结果。这种策略与日常生活中的各种「绩效奖励」非常类似。我们平时也常常用这样的策略来提高自己的游戏水平。在 Flappy bird 这个游戏中,我们需要简单的点击操作来控制小鸟,躲过各种水管,飞的越远越好,因为飞的越远就能获得更高的积分奖励。

# -------------------------------------------------------------------------
# Swin Transfromer
# .14030import torch
import torch.nn as nn
import torch.nn.functional as Ffrom timm.models.layers import DropPath, to_2tuple, trunc_normal_class WindowAttention(nn.Module):r""" Window based multi-head self attention (W-MSA) module with relative position bias.It supports both of shifted and non-shifted window.Args:dim (int): Number of input channels.window_size (tuple[int]): The height and width of the window.num_heads (int): Number of attention heads.qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: Trueqk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if setattn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0proj_drop (float, optional): Dropout ratio of output. Default: 0.0"""def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):super().__init__()self.dim = dimself.window_size = window_size  # Wh, Wwself.num_heads = num_headshead_dim = dim // num_headsself.scale = qk_scale or head_dim ** -0.5# define a parameter table of relative position biasself.relative_position_bias_table = nn.Parameter(torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH# get pair-wise relative position index for each token inside the windowcoords_h = torch.arange(self.window_size[0])coords_w = torch.arange(self.window_size[1])coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Wwcoords_flatten = torch.flatten(coords, 1)  # 2, Wh*Wwrelative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Wwrelative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0relative_coords[:, :, 1] += self.window_size[1] - 1relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Wwself.register_buffer("relative_position_index", relative_position_index)self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)trunc_normal_(self.relative_position_bias_table, std=.02)self.softmax = nn.Softmax(dim=-1)def forward(self, x, mask=None):"""Args:x: input features with shape of (num_windows*B, N, C)mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None"""B_, N, C = x.shapeqkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)q = q * self.scaleattn = (q @ k.transpose(-2, -1))relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nHrelative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Wwattn = attn + relative_position_bias.unsqueeze(0)if mask is not None:nW = mask.shape[0]attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)attn = attn.view(-1, self.num_heads, N, N)attn = self.softmax(attn)else:attn = self.softmax(attn)attn = self.attn_drop(attn)# print(attn.dtype, v.dtype)x = (attn @ v).transpose(1, 2).reshape(B_, N, C)x = self.proj(x)x = self.proj_drop(x)return xdef window_partition(x, window_size):"""Args:x: (B, H, W, C)window_size (int): window sizeReturns:windows: (num_windows*B, window_size, window_size, C)"""B, H, W, C = x.shapeassert H % window_size == 0, 'feature map h and w can not divide by window size'x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)return windowsdef window_reverse(windows, window_size, H, W):"""Args:windows: (num_windows*B, window_size, window_size, C)window_size (int): Window sizeH (int): Height of imageW (int): Width of imageReturns:x: (B, H, W, C)"""B = int(windows.shape[0] / (H * W / window_size / window_size))x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)return xclass SwinTransformerLayer(nn.Module):r""" Swin Transformer Layer.Args:dim (int): Number of input channels.input_resolution (tuple[int]): Input resulotion.num_heads (int): Number of attention heads.window_size (int): Window size.shift_size (int): Shift size for SW-MSA.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Trueqk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.drop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float, optional): Stochastic depth rate. Default: 0.0act_layer (nn.Module, optional): Activation layer. Default: nn.GELUnorm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self, dim, num_heads, window_size=7, shift_size=0,mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.num_heads = num_headsself.window_size = window_sizeself.shift_size = shift_sizeself.mlp_ratio = mlp_ratio# if min(self.input_resolution) <= self.window_size:#     # if window size is larger than input resolution, we don't partition windows#     self.shift_size = 0#     self.window_size = min(self.input_resolution)assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"self.norm1 = norm_layer(dim)self.attn = WindowAttention(dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)def create_mask(self, H, W):# calculate attention mask for SW-MSAimg_mask = torch.zeros((1, H, W, 1))  # 1 H W 1h_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1mask_windows = mask_windows.view(-1, self.window_size * self.window_size)attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))return attn_maskdef forward(self, x):# reshape x[b c h w] to x[b l c]_, _, H_, W_ = x.shapePadding = Falseif min(H_, W_) < self.window_size or H_ % self.window_size!=0:Padding = True# print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')pad_r = (self.window_size - W_ % self.window_size) % self.window_sizepad_b = (self.window_size - H_ % self.window_size) % self.window_sizex = F.pad(x, (0, pad_r, 0, pad_b))# print('2', x.shape)B, C, H, W = x.shapeL = H * Wx = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)  # b, L, c# create mask from init to forwardif self.shift_size > 0:attn_mask = self.create_mask(H, W).to(x.device)else:attn_mask = Noneshortcut = xx = self.norm1(x)x = x.view(B, H, W, C)# cyclic shiftif self.shift_size > 0:shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))else:shifted_x = x# partition windowsx_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, Cx_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C# W-MSA/SW-MSAattn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C# merge windowsattn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C# reverse cyclic shiftif self.shift_size > 0:x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))else:x = shifted_xx = x.view(B, H * W, C)# FFNx = shortcut + self.drop_path(x)x = x + self.drop_path(self.mlp(self.norm2(x)))x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W)  # b c h wif Padding:x = x[:, :, :H_, :W_]  # reverse paddingreturn x

参考这两篇文章:

深度学习知识点全面总结

一文看懂深度学习(白话解释+8个优缺点+4个典型算法)

更多推荐

目标检测算法——深度学习知识简要普及

本文发布于:2024-03-13 13:25:13,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1734085.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:简要   算法   深度   目标   知识

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!