050惯性系到地球系的导航方程

编程入门 行业动态 更新时间:2024-10-27 12:27:40

050<a href=https://www.elefans.com/category/jswz/34/1767955.html style=惯性系到地球系的导航方程"/>

050惯性系到地球系的导航方程

假设惯性系中的导航方程为:
{ r ˙ i = V i V ˙ i = C e i C b e f b + C e i g e R ˙ b i = R b i Ω i b b \begin{cases} \dot r^i = V^i \\ \dot V^i = C_e^i C_b^e f^b + C_e^i g^e \\ \dot R_b^i = R_b^i \Omega_{ib}^b \end{cases} ⎩⎪⎨⎪⎧​r˙i=ViV˙i=Cei​Cbe​fb+Cei​geR˙bi​=Rbi​Ωibb​​

Ω i b b \Omega_{ib}^b Ωibb​为 ω i b b \omega_{ib}^b ωibb​的反对称阵。

为推得地球系上的导航方程,下面再推导两个方程:

1、坐标变换矩阵微分方程

假设e系有一固定矢量 r e r^e re(注意这个固定矢量是常值向量),变换至i系得到 r i r^i ri,
r i = C e i r e r^i=C_e^i r^e ri=Cei​re
求导:
r ˙ i = C ˙ e i r e \dot r^i = \dot C_e^i r^e r˙i=C˙ei​re
而由于速度等于角速度乘矢径:
r ˙ i = ω i × r i = Ω i r i = C e i Ω i e e C i e r i \dot r^i = \omega^i \times r^i = \Omega^i r^i = C_e^i \Omega_{ie}^e C_i^e r^i r˙i=ωi×ri=Ωiri=Cei​Ωiee​Cie​ri
带入上式:
C e i Ω i e e C i e r i = C ˙ e i r e C_e^i \Omega_{ie}^e C_i^e r^i = \dot C_e^i r^e Cei​Ωiee​Cie​ri=C˙ei​re
即:
(1) C ˙ e i = C e i Ω i e e \tag{1} \dot C_e^i = C_e^i \Omega_{ie}^e C˙ei​=Cei​Ωiee​(1)

2、向量变换关系式

假设任意a系中的位置矢量(注意不是常值向量),变换到惯性系有:
r i = C a i r a r^i = C_a^i r^a ri=Cai​ra
求导:
r ˙ i = C ˙ a i r a + C a i r ˙ a \dot r^i = \dot C_a^i r^a + C_a^i \dot r^a r˙i=C˙ai​ra+Cai​r˙a
顾及公式(1):
r ˙ i = C a i Ω i a a r a + C a i r ˙ a \dot r^i = C_a^i \Omega_{ia}^a r^a + C_a^i \dot r^a r˙i=Cai​Ωiaa​ra+Cai​r˙a
再求导:
r ¨ i = C ˙ a i Ω i a a r a + C a i Ω ˙ i a a r a + C a i Ω i a a r ˙ a + C ˙ a i r ˙ a + C a i r ¨ a \ddot r^i = \dot C_a^i \Omega_{ia}^a r^a + C_a^i \dot\Omega_{ia}^a r^a + C_a^i \Omega_{ia}^a \dot r^a + \dot C_a^i \dot r^a + C_a^i \ddot r^a r¨i=C˙ai​Ωiaa​ra+Cai​Ω˙iaa​ra+Cai​Ωiaa​r˙a+C˙ai​r˙a+Cai​r¨a
顾及公式(1):
(2) r ¨ i = C a i Ω i a a Ω i a a r a + C a i Ω ˙ i a a r a + C a i Ω i a a r ˙ a + C a i Ω i a a r ˙ a + C a i r ¨ a = C a i ( Ω i a a Ω i a a r a + Ω ˙ i a a r a + Ω i a a r ˙ a + Ω i a a r ˙ a + r ¨ a ) = C a i ( r ¨ a + 2 Ω i a a r ˙ a + Ω ˙ i a a r a + Ω i a a Ω i a a r a ) \tag{2} \begin{aligned} \ddot r^i &amp;= C_a^i \Omega_{ia}^a \Omega_{ia}^a r^a + C_a^i \dot\Omega_{ia}^a r^a + C_a^i \Omega_{ia}^a \dot r^a + C_a^i \Omega_{ia}^a \dot r^a + C_a^i \ddot r^a \\ &amp;= C_a^i(\Omega_{ia}^a \Omega_{ia}^a r^a + \dot\Omega_{ia}^a r^a + \Omega_{ia}^a \dot r^a + \Omega_{ia}^a \dot r^a + \ddot r^a) \\ &amp;= C_a^i(\ddot r^a + 2\Omega_{ia}^a \dot r^a + \dot\Omega_{ia}^a r^a + \Omega_{ia}^a \Omega_{ia}^a r^a) \end{aligned} r¨i​=Cai​Ωiaa​Ωiaa​ra+Cai​Ω˙iaa​ra+Cai​Ωiaa​r˙a+Cai​Ωiaa​r˙a+Cai​r¨a=Cai​(Ωiaa​Ωiaa​ra+Ω˙iaa​ra+Ωiaa​r˙a+Ωiaa​r˙a+r¨a)=Cai​(r¨a+2Ωiaa​r˙a+Ω˙iaa​ra+Ωiaa​Ωiaa​ra)​(2)

下面进行惯性系导航方程向地球系的转换:

将公式(2)中的a系换为e系,那么有 Ω ˙ i e e \dot\Omega_{ie}^e Ω˙iee​等于0(地球自转角速度作为常数),便有:
(3) r ¨ i = C e i ( r ¨ e + 2 Ω i e e r ˙ e + Ω i e e Ω i e e r e ) \tag{3} \ddot r^i = C_e^i(\ddot r^e + 2\Omega_{ie}^e \dot r^e + \Omega_{ie}^e \Omega_{ie}^e r^e) r¨i=Cei​(r¨e+2Ωiee​r˙e+Ωiee​Ωiee​re)(3)
而:
(4) r ¨ i = f i + G i = C e i ( C b e f b + G e ) \tag{4} \ddot r^i = f^i + G^i = C_e^i(C_b^e f^b+G^e) r¨i=fi+Gi=Cei​(Cbe​fb+Ge)(4)
其中 f b f^b fb为比力向量, G e G^e Ge为地球引力加速度向量;
比较公式(3)和公式(4)可得:
C b e f b + G e = r ¨ e + 2 Ω i e e r ˙ e + Ω i e e Ω i e e r e C_b^e f^b+G^e = \ddot r^e + 2\Omega_{ie}^e \dot r^e + \Omega_{ie}^e \Omega_{ie}^e r^e Cbe​fb+Ge=r¨e+2Ωiee​r˙e+Ωiee​Ωiee​re

r ¨ e = C b e f b − 2 Ω i e e r ˙ e + G e − Ω i e e Ω i e e r e \ddot r^e = C_b^e f^b- 2\Omega_{ie}^e \dot r^e + G^e - \Omega_{ie}^e \Omega_{ie}^e r^e r¨e=Cbe​fb−2Ωiee​r˙e+Ge−Ωiee​Ωiee​re
由于地球系中重力向量=引力加速度向量+离心加速度矢量,即:
g e = G e − Ω i e e Ω i e e r e g^e = G^e - \Omega_{ie}^e \Omega_{ie}^e r^e ge=Ge−Ωiee​Ωiee​re
所以:
r ¨ e = C b e f b − 2 Ω i e e r ˙ e + g e = V ˙ e \ddot r^e = C_b^e f^b- 2\Omega_{ie}^e \dot r^e + g^e= \dot V^e r¨e=Cbe​fb−2Ωiee​r˙e+ge=V˙e
结合:
r ˙ e = V e \dot r^e = V^e r˙e=Ve

C ˙ b e = C b e Ω e b b = C b e ( Ω i b b − Ω i e b ) \dot C_b^e = C_b^e \Omega_{eb}^b = C_b^e(\Omega_{ib}^b - \Omega_{ie}^b) C˙be​=Cbe​Ωebb​=Cbe​(Ωibb​−Ωieb​)

得到地球系中的导航方程:
{ r ˙ e = V e V ˙ e = C b e f b − 2 Ω i e e r ˙ e + g e C ˙ b e = C b e ( Ω i b b − Ω i e b ) \begin{cases} \dot r^e = V^e\\ \dot V^e=C_b^e f^b- 2\Omega_{ie}^e \dot r^e + g^e\\ \dot C_b^e = C_b^e(\Omega_{ib}^b - \Omega_{ie}^b) \end{cases} ⎩⎪⎨⎪⎧​r˙e=VeV˙e=Cbe​fb−2Ωiee​r˙e+geC˙be​=Cbe​(Ωibb​−Ωieb​)​


参考自:《GPS/INS组合导航定位及其应用》,董绪荣
资源页中下载:042分享资料下载地址汇总

更多推荐

050惯性系到地球系的导航方程

本文发布于:2024-03-10 01:40:59,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1726687.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:惯性   方程   地球

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!