【深度学习21天学习挑战赛】7、卷积神经网络(CNN)医学领域应用——乳腺癌识别

编程入门 行业动态 更新时间:2024-10-09 08:29:24

【深度学习21天学习挑战赛】7、<a href=https://www.elefans.com/category/jswz/34/1765938.html style=卷积神经网络(CNN)医学领域应用——乳腺癌识别"/>

【深度学习21天学习挑战赛】7、卷积神经网络(CNN)医学领域应用——乳腺癌识别

活动地址:CSDN21天学习挑战赛

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍦 参考文章地址: 🔗深度学习100例 | 第26天-卷积神经网络(CNN):乳腺癌识别
  • 🍖 作者:K同学啊

今天继续学习CNN,案例是深度学习在医学领域的应用,乳腺癌是女性最常见的癌症形式,浸润性导管癌 (IDC) 是最常见的乳腺癌形式。准确识别和分类乳腺癌亚型是一项重要的临床任务,利用深度学习方法识别可以有效节省时间并减少错误。(完整源码附后)

1、数据导入、配置

数据集是由多张以 40 倍扫描的乳腺癌 (BCa) 标本的完整载玻片图像组成。

分为两类,即:正常细胞乳腺癌细胞
图片总数为: 13403

1.1 导入数据

import matplotlib.pyplot as plt
import os,PIL,pathlib
import numpy as np
import pandas as pd
import warnings
from tensorflow import keras
import pathlib
warnings.filterwarnings("ignore") 
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
data_dir = "./26-data"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)
batch_size = 16
img_height = 50
img_width  = 50train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break

1.2 配置数据集

AUTOTUNE = tf.data.experimental.AUTOTUNE 
def train_preprocessing(image,label):return (image/255.0,label)train_ds = (train_ds.cache().shuffle(1000).map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)           # 在image_dataset_from_directory处已经设置了batch_size.prefetch(buffer_size=AUTOTUNE)
)val_ds = (val_ds.cache().shuffle(1000).map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)         # 在image_dataset_from_directory处已经设置了batch_size.prefetch(buffer_size=AUTOTUNE)
)

1.3 可视化预览数据

plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")class_names = ["乳腺癌细胞","正常细胞"]for images, labels in train_ds.take(1):for i in range(15):plt.subplot(4, 5, i + 1)plt.xticks([])plt.yticks([])plt.grid(False)# 显示图片plt.imshow(images[i])# 显示标签plt.xlabel(class_names[labels[i]-1])plt.show()

2、模型的构建、编译、训练

2.1 构建模型

model = tf.keras.Sequential([tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu",input_shape=[img_width, img_height, 3]),tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu"),tf.keras.layers.MaxPooling2D((2,2)),tf.keras.layers.Dropout(0.5),tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu"),tf.keras.layers.MaxPooling2D((2,2)),tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu"),tf.keras.layers.MaxPooling2D((2,2)),tf.keras.layers.Flatten(),tf.keras.layers.Dense(2, activation="softmax")
])
model.summary()

2.2 编译模型

modelpile(optimizer="adam",loss='sparse_categorical_crossentropy',metrics=['accuracy'])

2.3 训练模型

from tensorflow.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateSchedulerNO_EPOCHS = 100
PATIENCE  = 5
VERBOSE   = 1# 设置动态学习率
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.99 ** (x+NO_EPOCHS))# 设置早停
earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE)# 
checkpointer = ModelCheckpoint('best_model.h5',monitor='val_accuracy',verbose=VERBOSE,save_best_only=True,save_weights_only=True)
train_model  = model.fit(train_ds,epochs=NO_EPOCHS,verbose=1,validation_data=val_ds,callbacks=[earlystopper, checkpointer, annealer])

训练结果:

Epoch 90/100
670/671 [============================>.] - ETA: 0s - loss: 0.2175 - accuracy: 0.9089
Epoch 00090: val_accuracy did not improve from 0.89851
671/671 [==============================] - 19s 29ms/step - loss: 0.2174 - accuracy: 0.9089 - val_loss: 0.3031 - val_accuracy: 0.8649
Epoch 91/100
670/671 [============================>.] - ETA: 0s - loss: 0.2185 - accuracy: 0.9083
Epoch 00091: val_accuracy did not improve from 0.89851
671/671 [==============================] - 19s 29ms/step - loss: 0.2183 - accuracy: 0.9083 - val_loss: 0.3082 - val_accuracy: 0.8701
Epoch 92/100
671/671 [==============================] - ETA: 0s - loss: 0.2160 - accuracy: 0.9074
Epoch 00092: val_accuracy did not improve from 0.89851
671/671 [==============================] - 18s 27ms/step - loss: 0.2160 - accuracy: 0.9074 - val_loss: 0.2741 - val_accuracy: 0.8869
Epoch 93/100
671/671 [==============================] - ETA: 0s - loss: 0.2165 - accuracy: 0.9103
Epoch 00093: val_accuracy did not improve from 0.89851
671/671 [==============================] - 20s 30ms/step - loss: 0.2165 - accuracy: 0.9103 - val_loss: 0.2739 - val_accuracy: 0.8877
Epoch 94/100
671/671 [==============================] - ETA: 0s - loss: 0.2152 - accuracy: 0.9080
Epoch 00094: val_accuracy did not improve from 0.89851
671/671 [==============================] - 18s 27ms/step - loss: 0.2152 - accuracy: 0.9080 - val_loss: 0.2740 - val_accuracy: 0.8866
Epoch 95/100
671/671 [==============================] - ETA: 0s - loss: 0.2138 - accuracy: 0.9092
Epoch 00095: val_accuracy did not improve from 0.89851
671/671 [==============================] - 18s 27ms/step - loss: 0.2138 - accuracy: 0.9092 - val_loss: 0.3400 - val_accuracy: 0.8541
Epoch 96/100
671/671 [==============================] - ETA: 0s - loss: 0.2149 - accuracy: 0.9092
Epoch 00096: val_accuracy did not improve from 0.89851
671/671 [==============================] - 18s 26ms/step - loss: 0.2149 - accuracy: 0.9092 - val_loss: 0.2897 - val_accuracy: 0.8806
Epoch 97/100
670/671 [============================>.] - ETA: 0s - loss: 0.2123 - accuracy: 0.9110
Epoch 00097: val_accuracy did not improve from 0.89851
671/671 [==============================] - 18s 27ms/step - loss: 0.2122 - accuracy: 0.9110 - val_loss: 0.3222 - val_accuracy: 0.8593
Epoch 98/100
671/671 [==============================] - ETA: 0s - loss: 0.2120 - accuracy: 0.9107
Epoch 00098: val_accuracy did not improve from 0.89851
671/671 [==============================] - 19s 28ms/step - loss: 0.2120 - accuracy: 0.9107 - val_loss: 0.3023 - val_accuracy: 0.8757
Epoch 99/100
670/671 [============================>.] - ETA: 0s - loss: 0.2113 - accuracy: 0.9114
Epoch 00099: val_accuracy did not improve from 0.89851
671/671 [==============================] - 19s 29ms/step - loss: 0.2112 - accuracy: 0.9114 - val_loss: 0.2606 - val_accuracy: 0.8918
Epoch 100/100
670/671 [============================>.] - ETA: 0s - loss: 0.2130 - accuracy: 0.9112
Epoch 00100: val_accuracy did not improve from 0.89851
671/671 [==============================] - 19s 28ms/step - loss: 0.2131 - accuracy: 0.9112 - val_loss: 0.2939 - val_accuracy: 0.8799

3、评估模型

3.1 Accuracy与Loss图

acc = train_model.history['accuracy']
val_acc = train_model.history['val_accuracy']loss = train_model.history['loss']
val_loss = train_model.history['val_loss']epochs_range = range(len(acc))plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

3.2 混淆矩阵

from sklearn.metrics import confusion_matrix
import seaborn as sns
import pandas as pd# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions):# 生成混淆矩阵conf_numpy = confusion_matrix(labels, predictions)# 将矩阵转化为 DataFrameconf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  plt.figure(figsize=(8,7))sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")plt.title('混淆矩阵',fontsize=15)plt.ylabel('真实值',fontsize=14)plt.xlabel('预测值',fontsize=14)val_pre   = []
val_label = []for images, labels in val_ds:#这里可以取部分验证数据(.take(1))生成混淆矩阵for image, label in zip(images, labels):# 需要给图片增加一个维度img_array = tf.expand_dims(image, 0) # 使用模型预测图片中的人物prediction = model.predict(img_array)val_pre.append(class_names[np.argmax(prediction)])val_label.append(class_names[label])plot_cm(val_label, val_pre)

3.3 各项指标评估

from sklearn import metricsdef test_accuracy_report(model):print(metrics.classification_report(val_label, val_pre, target_names=class_names)) score = model.evaluate(val_ds, verbose=0)print('Loss function: %s, accuracy:' % score[0], score[1])test_accuracy_report(model)

完整源码

import tensorflow as tf 
import matplotlib.pyplot as plt
import os,PIL,pathlib
import numpy as np
import pandas as pd
import warnings
from tensorflow import keraswarnings.filterwarnings("ignore")             #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号import pathlibdata_dir = "./26-data"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)batch_size = 16
img_height = 50
img_width  = 50"""
关于image_dataset_from_directory()的详细介绍可以参考文章:
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)breakAUTOTUNE = tf.data.experimental.AUTOTUNE
# 这里如果是 tf2.6 或者报错,使用 AUTOTUNE = tf.data.experimental.AUTOTUNE
def train_preprocessing(image,label):return (image/255.0,label)train_ds = (train_ds.cache().shuffle(1000).map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)           # 在image_dataset_from_directory处已经设置了batch_size.prefetch(buffer_size=AUTOTUNE)
)val_ds = (val_ds.cache().shuffle(1000).map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)         # 在image_dataset_from_directory处已经设置了batch_size.prefetch(buffer_size=AUTOTUNE)
)plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")class_names = ["乳腺癌细胞","正常细胞"]for images, labels in train_ds.take(1):for i in range(15):plt.subplot(4, 5, i + 1)plt.xticks([])plt.yticks([])plt.grid(False)# 显示图片plt.imshow(images[i])# 显示标签plt.xlabel(class_names[labels[i]-1])plt.show()
import tensorflow as tf
model = tf.keras.Sequential([tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu",input_shape=[img_width, img_height, 3]),tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu"),tf.keras.layers.MaxPooling2D((2,2)),tf.keras.layers.Dropout(0.5),tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu"),tf.keras.layers.MaxPooling2D((2,2)),tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu"),tf.keras.layers.MaxPooling2D((2,2)),tf.keras.layers.Flatten(),tf.keras.layers.Dense(2, activation="softmax")
])
model.summary()
modelpile(optimizer="adam",loss='sparse_categorical_crossentropy',metrics=['accuracy'])from tensorflow.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateSchedulerNO_EPOCHS = 100
PATIENCE  = 5
VERBOSE   = 1# 设置动态学习率
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.99 ** (x+NO_EPOCHS))# 设置早停
earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE)# 
checkpointer = ModelCheckpoint('best_model.h5',monitor='val_accuracy',verbose=VERBOSE,save_best_only=True,save_weights_only=True)train_model  = model.fit(train_ds,epochs=NO_EPOCHS,verbose=1,validation_data=val_ds,callbacks=[earlystopper, checkpointer, annealer])acc = train_model.history['accuracy']
val_acc = train_model.history['val_accuracy']loss = train_model.history['loss']
val_loss = train_model.history['val_loss']epochs_range = range(len(acc))plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()from sklearn.metrics import confusion_matrix
import seaborn as sns
import pandas as pd# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions):# 生成混淆矩阵conf_numpy = confusion_matrix(labels, predictions)# 将矩阵转化为 DataFrameconf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  plt.figure(figsize=(8,7))sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")plt.title('混淆矩阵',fontsize=15)plt.ylabel('真实值',fontsize=14)plt.xlabel('预测值',fontsize=14)val_pre   = []
val_label = []for images, labels in val_ds:#这里可以取部分验证数据(.take(1))生成混淆矩阵for image, label in zip(images, labels):# 需要给图片增加一个维度img_array = tf.expand_dims(image, 0) # 使用模型预测图片中的人物prediction = model.predict(img_array)val_pre.append(class_names[np.argmax(prediction)])val_label.append(class_names[label])
plot_cm(val_label, val_pre)from sklearn import metrics
def test_accuracy_report(model):print(metrics.classification_report(val_label, val_pre, target_names=class_names)) score = model.evaluate(val_ds, verbose=0)print('Loss function: %s, accuracy:' % score[0], score[1])
test_accuracy_report(model)

更多推荐

【深度学习21天学习挑战赛】7、卷积神经网络(CNN)医学领域应用——乳腺癌识别

本文发布于:2024-02-26 01:36:33,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1700932.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:卷积   神经网络   挑战赛   乳腺癌   深度

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!