【BZOJ2589】[SPOJ10707]Count on a tree II

编程入门 行业动态 更新时间:2024-10-27 22:32:45

【BZOJ2589】[SPOJ10707]<a href=https://www.elefans.com/category/jswz/34/1759757.html style=Count on a tree II"/>

【BZOJ2589】[SPOJ10707]Count on a tree II

【BZOJ2589】[SPOJ10707]Count on a tree II

题面

bzoj

题解

这题如果不强制在线就是一个很\(sb\)的莫队了,但是它强制在线啊\(qaq\)

所以我们就用到了另一个东西:树分块

具体是怎么分块的呢:根据深度,从最深的叶子节点往上分,同一子树内的节点在一个块

比如说上面那张图,

有\(7\)个点,那么我们每隔\(2\)的深度就分一块

但是我们又要保证同一子树内的在一块,且要从最深的叶子节点一直往下

所以最后分块的结果:\((1,2)(7,6,3)(4,5)\)。

知道怎么分块了,我们在来考虑怎么做。

现在给了你两个将询问的点\(u,v(dep[u]>dep[v])\),我们分类讨论一下现在的情况:

\((1):\)这两个点在同一个块内:
直接暴力统计即可
\((2):\)这两个点不在同一个块内:
这种情况比较复杂,记一个块的根为\(rt[i]\),则它到另外所有点的答案我们可以很轻松地
统计出来,只需要对于每个\(rt[i]\)暴力统计一遍就可以了。
那么现在我们要考虑的只有\(u\)到它的块的根\(x\)路径上是否会对答案产生贡献:
对于这个,我们可以将这个分块可持久化,维护这个点的颜色在它的祖先中出现最深的位置
的深度,那么一个块只需继承上面的块,并将在这个块中颜色的答案更新,因为那个颜色如
果出现在这个位置,那么答案肯定更优。
有了上面的铺垫,那我们只需对\(u\rightarrow x\)上的点暴力算它的深度是否超过\(lca_{u,v}\)即可

代码

#include <iostream> 
#include <cstdio> 
#include <cstdlib> 
#include <cstring> 
#include <cmath> 
#include <algorithm> 
using namespace std; 
inline int gi() { register int data = 0, w = 1; register char ch = 0; while (!isdigit(ch) && ch != '-') ch = getchar(); if (ch == '-') w = -1, ch = getchar(); while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); return w * data; 
} 
const int MAX_N = 4e4 + 5; 
struct Graph { int to, next; } e[MAX_N << 1]; int fir[MAX_N], e_cnt; 
void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; }  
void Add_Edge(int u, int v) { e[e_cnt] = (Graph){v, fir[u]}; fir[u] = e_cnt++; } 
int N, M, LEN; 
int X[MAX_N], a[MAX_N], b[MAX_N], r[MAX_N]; 
int P[MAX_N][205], A[205][MAX_N];
int fa[MAX_N], dep[MAX_N], q[MAX_N], belong[MAX_N], cur, sz;
int rt[205], tot;
int c[MAX_N], Res; 
struct Block {int a[205]; int &operator [] (int x) { return P[a[b[x]]][r[x]]; } void insert(Block rhs, int x, int d) { int blk = b[x], t = r[x]; memcpy(a, rhs.a, sizeof(a)); memcpy(P[++sz], P[a[blk]], sizeof(P[0])); P[sz][t] = d, a[blk] = sz; } 
} s[MAX_N]; namespace Tree { int top[MAX_N], son[MAX_N], size[MAX_N]; void dfs(int x, int tp) { top[x] = tp; if (son[x]) dfs(son[x], tp); for (int i = fir[x]; ~i; i = e[i].next) {int v = e[i].to; if (v == fa[x] || v == son[x]) continue; dfs(v, v); } }int LCA(int x, int y) {while (top[x] != top[y]) {if (dep[top[x]] < dep[top[y]]) swap(x, y); x = fa[top[x]]; } return dep[x] < dep[y] ? x : y; } 
} 
int dfs(int x, int f) { fa[x] = f; s[x].insert(s[f], a[x], dep[x] = dep[f] + 1); Tree::size[x] = 1; q[++cur] = x; int md = dep[x], p = cur; for (int i = fir[x]; ~i; i = e[i].next) {int v = e[i].to; if (v == f) continue; md = max(md, dfs(v, x)); Tree::size[x] += Tree::size[v]; if (Tree::size[Tree::son[x]] < Tree::size[v]) Tree::son[x] = v; } if (md - dep[x] >= LEN || p == 1) { rt[++tot] = x; for (int i = p; i <= cur; i++) belong[q[i]] = tot; cur = p - 1;return dep[x] - 1; } return md; 
}
void Prepare(int x, int f, int *s) { if (!c[a[x]]++) ++Res; s[x] = Res; for (int i = fir[x]; ~i; i = e[i].next) if (e[i].to != f) Prepare(e[i].to, x, s); if (!--c[a[x]]) --Res; 
} 
int Solve1(int u, int v) { for (cur = Res = 0; u != v; u = fa[u]) {if (dep[u] < dep[v]) swap(u, v); if (!c[q[++cur] = a[u]]) c[a[u]] = 1, ++Res; } for (Res += !c[a[u]]; cur; ) c[q[cur--]] = 0;return Res; 
} 
int Solve2(int u, int v) {if (dep[rt[belong[u]]] < dep[rt[belong[v]]]) swap(u, v); int x = rt[belong[u]], d = dep[Tree::LCA(u, v)]; Res = A[belong[u]][v]; for (cur = 0; u != x; u = fa[u]) { if (!c[a[u]] && s[x][a[u]] < d && s[v][a[u]] < d)c[q[++cur] = a[u]] = 1, ++Res; } for (; cur; ) c[q[cur--]] = 0; return Res; 
} 
int main () { clearGraph(); N = gi(), M = gi(); LEN = sqrt(N) - 1; for (int i = 1; i <= N; i++) b[i] = (i - 1) / LEN + 1, r[i] = i % LEN; for (int i = 1; i <= N; i++) a[i] = X[i] = gi(); sort(&X[1], &X[N + 1]); int cnt = unique(&X[1], &X[N + 1]) - X - 1; for (int i = 1; i <= N; i++) a[i] = lower_bound(&X[1], &X[cnt + 1], a[i]) - X; for (int i = 1; i < N; i++) { int u = gi(), v = gi();Add_Edge(u, v);Add_Edge(v, u); }cur = 0; dfs(1, 0); Tree::dfs(1, 1); for (int i = 1; i <= tot; i++) Prepare(rt[i], 0, A[i]); for (int ans = 0; M--; ) {int u = ans ^ gi(), v = gi(); printf("%d\n", ans = belong[u] == belong[v] ? Solve1(u, v) : Solve2(u, v)); } return 0; 
} 

转载于:.html

更多推荐

【BZOJ2589】[SPOJ10707]Count on a tree II

本文发布于:2024-02-17 05:02:51,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1692753.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:Count   II   tree

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!