简单看一下ROSPY

编程入门 行业动态 更新时间:2024-10-27 18:30:41

简单<a href=https://www.elefans.com/category/jswz/34/1740188.html style=看一下ROSPY"/>

简单看一下ROSPY

开始之前,首先要认识一下ROS里面的传感器

1 Imu.msg 陀螺仪数据,加速度m/s2,旋转速度rad/s,
(1)Header header 时间戳与坐标系 (2)geometry_msgs/Quaternion orientation 四元数表示方向 (3)float64[9] orientation_covariance协方差
(4)geometry_msgs/Vector3 angular_velocity 角速度 (5)float64[9] angular_velocity_covariance 角速度协方差 (6)geometry_msgs/Vector3 linear_acceleration 线性加速度(7)float64[9] linear_acceleration_covariance 线性加速度的协方差
2 Joy.msg 遥控器输出数据
(1)Header header时间戳
(2)float32[] axes 轴反馈
(3)int32[] buttons 按钮反馈
3 LaserScan.msg 线激光
(1)Header header 第一束光线获取的时间戳,frame_id 中,角度增益正向为z轴逆时针旋转,0角度为x轴正向
(2) float32 angle_min, float32 angle_max ,float32 angle_increment 起始角,结束角度,角度增益 (rad)
(3)float32 time_increment 两次测量之间的时间差(s),用于激光摄像头移动时,3d点的插入
(4)float32 scan_time 两次扫描之间的时间差(s)
(5)float32 range_min,float32 range_max 激光测距仪的最小距离、最大距离 (m)
(6)float32[] ranges 距离数组(m)
(7)float32[] intensities 强度数组(没有)
4 JointState.msg 关节状态(由扭矩控制的关节)
(1)std_msgs/Header header
(2)string[] name
(3)float64[] position 位置(m或rad)
(4)float64[] velocity速度(m/s或rad/s)
(5)float64[] effort 力(Nm或N)
资料来自:
因为我用的是纯粹的激光扫描,视觉图像方面的暂时线pass掉了。

其次认识一下 geometry_msgs消息类型

Point 点
float64 x ,float64 y,float64 z
Point32 float32 x,float32 y,float32 z 一般使用Point,大规模点云使用Point32
PointStamped
(1)std_msgs/Header header 包含坐标系和时间戳信息 (2)geometry_msgs/Point point 点
Polygon 多边形 geometry_msgs/Point32[] points
PolygonStamped
(1)std_msgs/Header header
(2)geometry_msgs/Polygon polygon
Pose 位姿(1)geometry_msgs/Point position 位置 (2)geometry_msgs/Quaternion orientation 姿态,即方向
Pose2D 2d平面的位姿float64 x,float64 y,float64 theta
PoseArray 位姿序列
(1)std_msgs/Header header
(2)geometry_msgs/Pose[] poses
PoseStamped 位姿
(1)std_msgs/Header header
(2)geometry_msgs/Pose pose
PoseWithCovariance
(1)geometry_msgs/Pose pose 即(x, y, z, X 旋转, Y旋转, Z旋转)(2)float64[36] covariance协方差
PoseWithCovarianceStamped
(1)std_msgs/Header header (2)geometry_msgs/PoseWithCovariance pose
Quaternion 四元数旋转float64 x,float64 y,float64 z,float64 w
QuaternionStamped
Transform 坐标系之间的变换
(1)geometry_msgs/Vector3 translation 平移向量 (2)geometry_msgs/Quaternion rotation 旋转向量
TransformStamped
Twist 速度
(1)geometry_msgs/Vector3 linear 线速度(2)geometry_msgs/Vector3 angular角速度
TwistStamped
TwistWithCovariance
TwistWithCovarianceStamped
Vector3 向量float64 x,float64 y,float64 z
Vector3Stamped
Wrench 力
(1)geometry_msgs/Vector3 force 力(2)geometry_msgs/Vector3 torque 扭矩
WrenchStamped

趁热打铁看一下nav_msgs消息类型

一、消息类型

1 GridCells 栅格单元
(1)std_msgs/Header header头,时间戳与坐标系
(2)float32 cell_width,float32 cell_height宽度与高度
(3)geometry_msgs/Point[] cells数组
2 MapMetaData 占有率栅格地图数据
(1)time map_load_time 地图被加载的时间
(2)float32 resolution 分辨率(m/cell)(3)uint32 width,uint32 height (4)geometry_msgs/Pose origin 真实世界中的原点 (m,m,rad) 图像中的(0,0)点
3 OccupancyGrid 2d栅格地图
(1)Header header
(2)nav_msgs/MapMetaData info 地图信息
(3)int8[] data 占有率地图数据序列,概率为【0-100】,未知为-1
4 Odometry 估计的位姿与速度
(1)std_msgs/Header header 位姿所在坐标系
(2)string child_frame_id 速度所在坐标系 (3)geometry_msgs/PoseWithCovariance pose 位姿 (4)geometry_msgs/TwistWithCovariance twist 速度
5 Path 路径
(1)Header header
(2)geometry_msgs/PoseStamped[] poses 代表路径的三维点坐标数组
二、服务
1 GetMap.srv 接收地图
不发送数据
接受:nav_msgs/OccupancyGrid map
2 GetPlan.srv 规划当前位置到目标位置的路径
发送(1)geometry_msgs/PoseStamped start 起始点
(2)geometry_msgs/PoseStamped goal 目标点
(3) float32 tolerance 如果不能到达目标,最近可到的约束
-接受
nav_msgs/Path plan 路径

现在可以看一下ROSPY

还真是没什么东西
python的math模块
math.copysign(x,y)—返回与y同号的x值
sqrt–返回平方根
pow(x,y)–返回x的y次方

对着下面检查直线距离的程序demo捋一遍吧

#!/usr/bin/env pythonimport rospy 
from geometry_msgs.msg import Twist, Point //导入点和速度
from math import copysign, sqrt, pow
import tf
#校正的类
class CalibrateLinear():def __init__(self):# Give the node a namerospy.init_node('calibrate_linear', anonymous=False# Set rospy to execute a shutdown function when terminating the scriptrospy.on_shutdown(self.shutdown)# How fast will we check the odometry values? 读取里程计的速率self.rate = rospy.get_param('~rate', 20)r = rospy.Rate(self.rate)# Set the distance to travel self.test_distance = rospy.get_param('~test_distance', 1.0) # metersself.speed = rospy.get_param('~speed', 0.15) # meters per secondself.tolerance = rospy.get_param('~tolerance', 0.01) # metersself.odom_linear_scale_correction = rospy.get_param('~odom_linear_scale_correction', 1.0)self.start_test = rospy.get_param('~start_test', True)# Publisher to control the robot's speedself.cmd_vel = rospy.Publisher('/cmd_vel', Twist, queue_size=5)# The base frame is base_footprint for the TurtleBot but base_link for Pi Robotself.base_frame = rospy.get_param('~base_frame', '/base_footprint')# The odom frame is usually just /odomself.odom_frame = rospy.get_param('~odom_frame', '/odom')# Initialize the tf listenerself.tf_listener = tf.TransformListener()# Give tf some time to fill its bufferrospy.sleep(2)# Make sure we see the odom and base framesself.tf_listener.waitForTransform(self.odom_frame, self.base_frame, rospy.Time(), rospy.Duration(60.0))        rospy.loginfo("Bring up rqt_reconfigure to control the test.")self.position = Point()# Get the starting position from the tf transform between the odom and base framesself.position = self.get_position()x_start = self.position.xy_start = self.position.ymove_cmd = Twist()while not rospy.is_shutdown():# Stop the robot by defaultmove_cmd = Twist()if self.start_test:# Get the current position from the tf transform between the odom and base framesself.position = self.get_position()# Compute the Euclidean distance from the target pointdistance = sqrt(pow((self.position.x - x_start), 2) +pow((self.position.y - y_start), 2))# Correct the estimated distance by the correction factordistance *= self.odom_linear_scale_correction# How close are we?error =  distance - self.test_distance# Are we close enough?if not self.start_test or abs(error) <  self.tolerance:self.start_test = Falseparams = {'start_test': False}rospy.loginfo(params)else:# If not, move in the appropriate directionmove_cmd.linear.x = copysign(self.speed, -1 * error)else:self.position = self.get_position()x_start = self.position.xy_start = self.position.yself.cmd_vel.publish(move_cmd)r.sleep()# Stop the robotself.cmd_vel.publish(Twist())def get_position(self):# Get the current transform between the odom and base framestry:(trans, rot)  = self.tf_listener.lookupTransform(self.odom_frame, self.base_frame, rospy.Time(0))except (tf.Exception, tf.ConnectivityException, tf.LookupException):rospy.loginfo("TF Exception")returnreturn Point(*trans)def shutdown(self):# Always stop the robot when shutting down the noderospy.loginfo("Stopping the robot...")self.cmd_vel.publish(Twist())rospy.sleep(1)if __name__ == '__main__':try:CalibrateLinear()rospy.spin()except:rospy.loginfo("Calibration terminated.")

更多推荐

简单看一下ROSPY

本文发布于:2024-02-08 14:48:52,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1674198.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:看一下   简单   ROSPY

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!