Dynamic Antenna array 用于近场重新总结

编程入门 行业动态 更新时间:2024-10-22 12:25:17

<a href=https://www.elefans.com/category/jswz/34/1770027.html style=Dynamic Antenna array 用于近场重新总结"/>

Dynamic Antenna array 用于近场重新总结

Main Point

加密和交织可以混合在一起吗?

\subsection{System Model}
Single User, One DMA as a transmitter. Alice, Bob, Willie. Covert, Artificial Noise, Sparse, Angle domain.

论文1 Beam Focusing for Near-Field Multiuser MIMO Communications

\subsection{Near Field channel model}

To evaluate the ability to exploit near-field operation in MIMO communications, we focus on downlink multi-user systems. In particular, we consider a downlink multi-user MIMO system where the BS employs a uniform planar array (UPA), i.e., a two-dimensional antenna surface, with N e N_{e} Ne​ uniformly spaced radiating elements in the horizontal direction and N d N_{d} Nd​ elements in the vertical direction. The total number of antenna elements is thus N = N d × N e N=N_{d} \times N_{e} N=Nd​×Ne​ . We denote the Cartesian coordinate of the l l l th element of the i i i th row as p i , l = ( x l , y i , 0 ) , l = 1 , 2 , … N e , i = 1 , 2 , … N d \mathbf{p}_{i, l}=\left(x_{l}, y_{i}, 0\right), l=1,2, \ldots N_{e}, i=1,2, \ldots N_{d} pi,l​=(xl​,yi​,0),l=1,2,…Ne​,i=1,2,…Nd​ . The BS communicates with M M M single-antenna receivers, as illustrated in Fig. 2. We consider that the receivers’ positioning information is known at the BS via high-accuracy wireless positioning techniques [3]. We focus on communications in the near-field, i.e., where the distance between the BS and the users is not larger than the Fraunhofer distance d F d_{\mathrm{F}} dF​ and not smaller than the Fresnel limit d N d_{\mathrm{N}} dN​ . The properties of near-field spherical waves allow for the generation of focused beams to facilitate communications.

To start, we model the near-field wireless channels following
existing modelling techniques for EM propagation in the radiating near-field, e.g., [30]. The signal received in free-space conditions by the legitimate user Bob, located at p b = ( x b , y b , z b ) \mathbf{p}_{b}=\left(x_{b}, y_{b}, z_{b}\right) pb​=(xb​,yb​,zb​) is given by

r ( p b ) = ∑ i = 1 N d ∑ l = 1 N e A i , l ( p b ) e − ȷ k ∣ p b − p i , l ∣ s i , l + n b \begin{equation} r\left(\mathbf{p}_{b}\right)=\sum_{i=1}^{N_{d}} \sum_{l=1}^{N_{e}} A_{i, l}\left(\mathbf{p}_{b}\right) e^{-\jmath k\left|\mathbf{p}_{b}-\mathbf{p}_{i, l}\right|} s_{i, l}+n_{b} \end{equation} r(pb​)=i=1∑Nd​​l=1∑Ne​​Ai,l​(pb​)e−k∣pb​−pi,l​∣si,l​+nb​​​

where s i , l s_{i, l} si,l​ denotes the signal emitted by the antenna at position p i , l \mathbf{p}_{i, l} pi,l​ ; the term e − ȷ k ∣ p m − p i , l ∣ e^{-\jmath k\left|\mathbf{p}_{m}-\mathbf{p}_{i, l}\right|} e−k∣pm​−pi,l​∣ contains the phase due to the distance travelled by the wave from p i , l \mathbf{p}_{i, l} pi,l​ to p m \mathbf{p}_{m} pm​ ; k = 2 π / λ k= 2 \pi / \lambda k=2π/λ is the wave number; A i , l ( p m ) A_{i, l}\left(\mathbf{p}_{m}\right) Ai,l​(pm​) denotes the channel gain coefficient; and n m ∼ C N ( 0 , σ 2 ) n_{m} \sim \mathcal{C N}\left(0, \sigma^{2}\right) nm​∼CN(0,σ2) is the additive white Gaussian noise (AWGN) at user m m m . Following [30], we write

A i , l ( p m ) = F ( Θ i , l , m ) λ 4 π ∣ p m − p i , l ∣ \begin{equation} A_{i, l}\left(\mathbf{p}_{m}\right)=\sqrt{F\left(\Theta_{i, l, m}\right)} \frac{\lambda}{4 \pi\left|\mathbf{p}_{m}-\mathbf{p}_{i, l}\right|} \end{equation} Ai,l​(pm​)=F(Θi,l,m​) ​4π∣pm​−pi,l​∣λ​​​

where Θ i , l , m = ( θ i , l , m , ϕ i , l , m ) \Theta_{i, l, m}=\left(\theta_{i, l, m}, \phi_{i, l, m}\right) Θi,l,m​=(θi,l,m​,ϕi,l,m​) is the elevation-azimuth pair from the l l l th element of the i i i th row to the m m m th user, while F ( Θ i , l , m ) F\left(\Theta_{i, l, m}\right) F(Θi,l,m​) is the radiation profile of each element, modeled as

F ( Θ i , l , m ) = { 2 ( b + 1 ) cos ⁡ b ( θ i , l , m ) θ i , l , m ∈ [ 0 , π / 2 ] 0  otherwise  \begin{equation} F\left(\Theta_{i, l, m}\right)=\left\{\begin{array}{ll} 2(b+1) \cos ^{b}\left(\theta_{i, l, m}\right) & \theta_{i, l, m} \in[0, \pi / 2] \\ 0 & \text { otherwise } \end{array}\right. \end{equation} F(Θi,l,m​)={2(b+1)cosb(θi,l,m​)0​θi,l,

更多推荐

Dynamic Antenna array 用于近场重新总结

本文发布于:2023-12-07 12:34:10,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1671216.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:Dynamic   Antenna   array

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!