STM32两轮平衡小车原理详解(开源)

编程入门 行业动态 更新时间:2024-10-28 18:25:00

STM32两轮平衡<a href=https://www.elefans.com/category/jswz/34/1766934.html style=小车原理详解(开源)"/>

STM32两轮平衡小车原理详解(开源)

一、引言

关于STM32两轮平衡车的设计,我想在读者阅读本文之前应该已经有所了解,所以本文的重点是代码的分享和分析。至于具体的原理,我觉得读者不必阅读长篇大论的文章,只需按照本文分享的代码自己亲手制作一辆平衡车,其原理并不言而喻了。源完整代码工程在文章末尾百度网盘链接,请需要的读者自行下载即可。

另外,由于平衡车的精髓在于PID算法的运用,有需要了解PID算法的读者可以参考以下两篇文章:

PID算法详解(代码详解篇),位置式PID、增量式PID(通用)_pid 代码-CSDN博客

PID算法详解(精华知识汇总)_小小_扫地僧的博客-CSDN博客

二、所需材料

1、STM32F03C8T6

2、MPU6050

3、蓝牙模块

4、编码电机

5、TB6612

6、电源+稳压模块

7、OLED显示模块

三、接线强调

1、TB6612接线

2、蓝牙模块与单片机之间

单片机                蓝牙模块

 TX      ——>     RX  

 RX      ——>     TX  

3、MPU6050 

使用IIC通信,所以对照代码接SDA、SCL、GND、VCC、IN(中断触发线)

四、功能介绍

1、两轮平衡直立

2、蓝牙APP控制运动状态

3、遥控手柄控制

4、超声波避障

五、关键算法

PID算法对编码电机的控制

1.位置闭环控制

        位置闭环控制就是根据编码器的脉冲累加测量电机的位置信息,并与目标值进行比较,得到控制偏差,然后通过对偏差的比例、积分、微分进行控制,使偏差趋向于零的过程。 位置闭环控制就是根据编码器的脉冲累加测量电机的位置信息,并与目标值进行比较,得到控制偏差,然后通过对偏差的比例、积分、微分进行控制,使偏差趋向于零的过程.

1.1理论分析

1.2控制原理图 

1.3C语言实现 

int Position_PID (int Encoder, int Target)
{static float Bias, Pwm,Integral_bias,Last_Bias;Bias=Encoder-Target;//计算偏差Integral_bias+=Bias; //求出偏差的积分Pwm=Position_KP*Bias+Position_KI*Integral_bias+Position_KD*(Bias-Last_Bias);Last_Bias=Bias;  //保存上一次偏差return Pwm; //输出
}

入口参数为编码器的位置测量值和位置控制的目标值,返回值为电机控制PWM(现在再看一下上面的控制原理图是不是更加容易明白了)。
第一行是相关内部变量的定义。
第二行是求出速度偏差,由测量值减去目标值。第三行通过累加求出偏差的积分。
第四行使用位置式PID控制器求出电机 PWM。第五行保存上一次偏差,便于下次调用。最后一行是返回。
然后,在定时中断服务函数里面调用该函数实现我们的控制目标:Moto=Position_PID(Encoder, Target_Position);
Set_Pwm(Moto) ;//===赋值给PWM寄存器

2、速度闭环控制

速度闭环控制就是根据单位时间获取的脉冲数(这里使用了M法测速)测量电机的速度信息,并与目标值进行比较,得到控制偏差,然后通过对偏差的比例、积分、微分进行控制,使偏差趋向于零的过程。
一些PID的要点在位置控制中已经有讲解,这里不再赘叙。
需要说明的是,这里速度控制20ms一次,一般建议10ms或者5ms,因为在这里电机是使用USB供电,速度比较慢,20ms可以延长获取速度的单位时间,提高编码器的采值。

 2.1理论分析

根据增量式离散PID公式 根据增量式离散PID公式
Pwm+=Kp[e(k)-e(k-1)]+Ki*e(k)+Kd[e(k)-2e(k-1)+e(k-2)]
e(k):本次偏差
e(k-1):上一次的偏差e (k-2):上上次的偏差
Pwm 代表增量输出

在我们的速度控制闭环系统里面只使用PI控制,因此对PID控制器可简化为以下公式:
Pwm+=Kp[e(k)-e(k-1)]+Ki*e(k)

2.2 控制原理图

2.3 C语言实现

增量式PI控制器具体通过C语言实现的代码如下:
 

int Incremental_PI (int Encoder,int Target)
{static float Bias, Pwm, Last_bias;Bias=Encoder-Target;//计算偏差Pwm+=Velocity_KP*(Bias-Last_bias)+Velocity_KI*Bias;//增量式PI控制器Last_bias=Bias;//保存上一次偏差return Pwm;//增量输出
}

入口参数为编码器的速度测量值和速度控制的目标值,返回值为电机控制PWM。
第一行是相关内部变量的定义。
第二行是求出速度偏差,由测量值减去目标值。第三行使用增量PI控制器求出电机PWM。
第四行保存上一次偏差,便于下次调用。最后一行是返回。
然后,在定时中断服务函数里面调用该函数实现我们的控制目标:

Moto=Incremental_PI(Encoder, Target_Velocity);Set_Pwm(Moto);//===赋值给对应MCU的PWM寄存器

六、关键代码分析

1、编码电机PID算法控制

#include "control.h"
#include "usart2.h"/**************************************************************************
函数功能:所有的控制代码都在这里面5ms定时中断由MPU6050的INT引脚触发严格保证采样和数据处理的时间同步	在MPU6050的采样频率设置中,设置成100HZ,即可保证6050的数据是10ms更新一次。读者可在imv_mpu.h文件第26行的宏定义进行修改(#define DEFAULT_MPU_HZ  (100))
**************************************************************************/
#define SPEED_Y 100 //俯仰(前后)最大设定速度
#define SPEED_Z 80//偏航(左右)最大设定速度 int Balance_Pwm,Velocity_Pwm,Turn_Pwm,Turn_Kp;float Mechanical_angle=8; 
float Target_Speed=0;	//期望速度(俯仰)。用于控制小车前进后退及其速度。
float Turn_Speed=0;		//期望速度(偏航)//针对不同车型参数,在sys.h内设置define的电机类型
float balance_UP_KP=BLC_KP; 	 // 小车直立环PD参数
float balance_UP_KD=BLC_KD;float velocity_KP=SPD_KP;     // 小车速度环PI参数
float velocity_KI=SPD_KI;float Turn_Kd=TURN_KD;//转向环KP、KD
float Turn_KP=TURN_KP;void EXTI9_5_IRQHandler(void) 
{static u8 Voltage_Counter=0;if(PBin(5)==0){EXTI->PR=1<<5;                                          //清除LINE5上的中断标志位   mpu_dmp_get_data(&pitch,&roll,&yaw);		            //得到欧拉角(姿态角)的数据MPU_Get_Gyroscope(&gyrox,&gyroy,&gyroz);				//得到陀螺仪数据Encoder_Left=Read_Encoder(2);                           //读取编码器的值,保证输出极性一致Encoder_Right=-Read_Encoder(3);                         //读取编码器的值Led_Flash(100);Voltage_Counter++;if(Voltage_Counter==20)                                 //100ms读取一次电压{Voltage_Counter=0;Voltage=Get_battery_volt();		                    //读取电池电压}if(KEY_Press(100))										//长按按键切换模式并触发模式切换初始化{if(++CTRL_MODE>=101) CTRL_MODE=97;Mode_Change=1;}Get_RC();Target_Speed=Target_Speed>SPEED_Y?SPEED_Y:(Target_Speed<-SPEED_Y?(-SPEED_Y):Target_Speed);//限幅Turn_Speed=Turn_Speed>SPEED_Z?SPEED_Z:(Turn_Speed<-SPEED_Z?(-SPEED_Z):Turn_Speed);//限幅( (20*100) * 100)Balance_Pwm =balance_UP(pitch,Mechanical_angle,gyroy);   							//===直立环PID控制	Velocity_Pwm=velocity(Encoder_Left,Encoder_Right,Target_Speed);       //===速度环PID控制	 Turn_Pwm =Turn_UP(gyroz,Turn_Speed);        						  //===转向环PID控制Moto1=Balance_Pwm-Velocity_Pwm+Turn_Pwm;                              //===计算左轮电机最终PWMMoto2=Balance_Pwm-Velocity_Pwm-Turn_Pwm;                              //===计算右轮电机最终PWMXianfu_Pwm();  														  //===PWM限幅Turn_Off(pitch,12);													  //===检查角度以及电压是否正常Set_Pwm(Moto1,Moto2);                                                 //===赋值给PWM寄存器  }
}/**************************************************************************
函数功能:直立PD控制
入口参数:角度、机械平衡角度(机械中值)、角速度
返回  值:直立控制PWM
**************************************************************************/
int balance_UP(float Angle,float Mechanical_balance,float Gyro)
{  float Bias;int balance;Bias=Angle-Mechanical_balance;    							 //===求出平衡的角度中值和机械相关balance=balance_UP_KP*Bias+balance_UP_KD*Gyro;              //===计算平衡控制的电机PWM  PD控制   kp是P系数 kd是D系数 return balance;
}/**************************************************************************
函数功能:速度PI控制
入口参数:电机编码器的值
返回  值:速度控制PWM
**************************************************************************/
int velocity(int encoder_left,int encoder_right,int Target_Speed)
{  static float Velocity,Encoder_Least,Encoder;static float Encoder_Integral;//=============速度PI控制器=======================//	Encoder_Least =(Encoder_Left+Encoder_Right);//-target;              //===获取最新速度偏差==测量速度(左右编码器之和)-目标速度 Encoder *= 0.8;		                                                //===一阶低通滤波器       Encoder += Encoder_Least*0.2;	                                    //===一阶低通滤波器    Encoder_Integral +=Encoder;                                         //===积分出位移 积分时间:10msEncoder_Integral=Encoder_Integral - Target_Speed;                   //===接收遥控器数据,控制前进后退if(Encoder_Integral>10000)  	Encoder_Integral=10000;             //===积分限幅if(Encoder_Integral<-10000)		Encoder_Integral=-10000;            //===积分限幅	Velocity=Encoder*velocity_KP+Encoder_Integral*velocity_KI;          //===速度控制	if(pitch<-40||pitch>40) 			Encoder_Integral=0;     			//===电机关闭后清除积分return Velocity;
}
/**************************************************************************
函数功能:转向PD控制
入口参数:电机编码器的值、Z轴角速度
返回  值:转向控制PWM
**************************************************************************/int Turn_UP(int gyro_Z, int RC)
{int PWM_out;/*转向约束*/if(RC==0)Turn_Kd=TURN_KD;                                              //若无左右转向指令,则开启转向约束else Turn_Kd=0;                                                    //若左右转向指令接收到,则去掉转向约束PWM_out=Turn_Kd*gyro_Z + Turn_KP*RC;return PWM_out;
}void Tracking()
{TkSensor=0;TkSensor+=(C1<<3);TkSensor+=(C2<<2);TkSensor+=(C3<<1);TkSensor+=C4;
}
void Get_RC()
{static u8 SR04_Counter =0;static float RATE_VEL = 1;float RATE_TURN = 1.6;float LY,RX;      //PS2手柄控制变量int Yuzhi=2;  		//PS2控制防抖阈值switch(CTRL_MODE){case 97:SR04_Counter++;if(SR04_Counter>=20)									         //100ms读取一次超声波的数据{SR04_Counter=0;SR04_StartMeasure();												 //读取超声波的值}if(SR04_Distance<=30)				{Target_Speed=0,Turn_Speed=40;}else{Target_Speed=30,Turn_Speed=0;}break;case 98://蓝牙模式if((Fore==0)&&(Back==0))Target_Speed=0;//未接受到前进后退指令-->速度清零,稳在原地if(Fore==1)Target_Speed--;//前进1标志位拉高-->需要前进if(Back==1)Target_Speed++;///*左右*/if((Left==0)&&(Right==0))Turn_Speed=0;if(Left==1)Turn_Speed-=30;	//左转if(Right==1)Turn_Speed+=30;	//右转break;case 99://循迹模式Tracking();switch(TkSensor){case 15:Target_Speed=0;Turn_Speed=0;break;case 9:Target_Speed--;Turn_Speed=0;break;case 2://向右转Target_Speed--;Turn_Speed=15;break;case 4://向左转Target_Speed--;Turn_Speed=-15;break;case 8:Target_Speed=-10;Turn_Speed=-80;break;case 1:Target_Speed=-10;Turn_Speed=80;break;}break;case 100://PS2手柄遥控if(PS2_Plugin){LY=PS2_LY-128; //获取偏差RX=PS2_RX-128; //获取偏差if(LY>-Yuzhi&&LY<Yuzhi)LY=0; //设置小角度的死区if(RX>-Yuzhi&&RX<Yuzhi)RX=0; //设置小角度的死区if(Target_Speed>-LY/RATE_VEL) Target_Speed--;else if(Target_Speed<-LY/RATE_VEL) Target_Speed++;Turn_Speed=RX/RATE_TURN;}else{Target_Speed=0,Turn_Speed=0;}break;}
}

 2、编码电机编码值采集

#include "encoder.h"/**************************************************************************
函数功能:把TIM2初始化为编码器接口模式
入口参数:无
返回  值:无
**************************************************************************/
void Encoder_Init_TIM2(void)
{TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;  TIM_ICInitTypeDef TIM_ICInitStructure;  GPIO_InitTypeDef GPIO_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);//使能定时器4的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//使能PB端口时钟GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1;	//端口配置GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);					      //根据设定参数初始化GPIOBTIM_TimeBaseStructInit(&TIM_TimeBaseStructure);TIM_TimeBaseStructure.TIM_Prescaler = 0x0; // 预分频器 TIM_TimeBaseStructure.TIM_Period = ENCODER_TIM_PERIOD; //设定计数器自动重装值TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;//选择时钟分频:不分频TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM向上计数  TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);TIM_EncoderInterfaceConfig(TIM2, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);//使用编码器模式3TIM_ICStructInit(&TIM_ICInitStructure);TIM_ICInitStructure.TIM_ICFilter = 10;TIM_ICInit(TIM2, &TIM_ICInitStructure);TIM_ClearFlag(TIM2, TIM_FLAG_Update);//清除TIM的更新标志位TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);//Reset counterTIM_SetCounter(TIM2,0);TIM_Cmd(TIM2, ENABLE); 
}
/**************************************************************************
函数功能:把TIM3初始化为编码器接口模式
入口参数:无
返回  值:无
**************************************************************************/
void Encoder_Init_TIM3(void)
{TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;  TIM_ICInitTypeDef TIM_ICInitStructure;  GPIO_InitTypeDef GPIO_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);//使能定时器4的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//使能PB端口时钟GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;	//端口配置GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);					      //根据设定参数初始化GPIOBTIM_TimeBaseStructInit(&TIM_TimeBaseStructure);TIM_TimeBaseStructure.TIM_Prescaler = 0x0; // 预分频器 TIM_TimeBaseStructure.TIM_Period = ENCODER_TIM_PERIOD; //设定计数器自动重装值TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;//选择时钟分频:不分频TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM向上计数  TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); TIM_EncoderInterfaceConfig(TIM3, TIM_EncoderMode_TI12,TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);//使用编码器模式3TIM_ICStructInit(&TIM_ICInitStructure);TIM_ICInitStructure.TIM_ICFilter = 10;TIM_ICInit(TIM3, &TIM_ICInitStructure);TIM_ClearFlag(TIM3, TIM_FLAG_Update);//清除TIM的更新标志位TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);//Reset counterTIM_SetCounter(TIM3,0);TIM_Cmd(TIM3, ENABLE); 
}/**************************************************************************
函数功能:单位时间读取编码器计数
入口参数:定时器
返回  值:速度值
**************************************************************************/
int Read_Encoder(u8 TIMX)
{int Encoder_TIM;    switch(TIMX){case 2:  Encoder_TIM= (short)TIM2 -> CNT; TIM2 -> CNT=0;break;case 3:  Encoder_TIM= (short)TIM3 -> CNT;  TIM3 -> CNT=0;break;	default: Encoder_TIM=0;}return Encoder_TIM;
}

3、PWM配置

#include "pwm.h"//PWM输出初始化
//arr:自动重装值
//psc:时钟预分频数
//TIM1_PWM_Init(7199,0);//PWM频率=72000/(7199+1)=10Khzvoid TIM1_PWM_Init(u16 arr,u16 psc)
{  GPIO_InitTypeDef GPIO_InitStructure;TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;TIM_OCInitTypeDef  TIM_OCInitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);// RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE);  //使能GPIO外设时钟使能//设置该引脚为复用输出功能,输出TIM1 CH1 CH4的PWM脉冲波形GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_11; //TIM_CH1 //TIM_CH4GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值	 TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值  不分频TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_timTIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式1TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能TIM_OCInitStructure.TIM_Pulse = 0;                            //设置待装入捕获比较寄存器的脉冲值TIM_OCInitStructure.TIM_Pulse = arr >> 1;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;     //输出极性:TIM输出比较极性高TIM_OC1Init(TIM1, &TIM_OCInitStructure);  //根据TIM_OCInitStruct中指定的参数初始化外设TIMxTIM_OC4Init(TIM1, &TIM_OCInitStructure);  //根据TIM_OCInitStruct中指定的参数初始化外设TIMxTIM_CtrlPWMOutputs(TIM1,ENABLE);	//MOE 主输出使能	TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);  //CH1预装载使能	 TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);  //CH4预装载使能	 TIM_ARRPreloadConfig(TIM1, ENABLE); //使能TIMx在ARR上的预装载寄存器TIM_Cmd(TIM1, ENABLE);  //使能TIM1
}

4、蓝牙控制

#include "usart2.h"/**************************************************************************
函数功能:串口2初始化
入口参数: bound:波特率
返回  值:无
**************************************************************************/
void uart2_init(u32 bound)
{  	 //GPIO端口设置GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//使能UGPIOB时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);	//使能USART2时钟//USART2_TX  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //PA2GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;	//复用推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure);//USART2_RX	  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;//PA3GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);//USART 初始化设置USART_InitStructure.USART_BaudRate = bound;//串口波特率USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;	//收发模式USART_Init(USART2, &USART_InitStructure);     //初始化串口2USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);//开启串口接受中断USART_Cmd(USART2, ENABLE);                    //使能串口2 
}/**************************************************************************
函数功能:串口2接收中断
入口参数:无
返回  值:无
**************************************************************************/
u8 Fore,Back,Left,Right;
void USART2_IRQHandler(void)
{int Uart_Receive;if(USART_GetITStatus(USART2,USART_IT_RXNE)!=RESET)//接收中断标志位拉高{Uart_Receive=USART_ReceiveData(USART2);//保存接收的数据BluetoothCMD(Uart_Receive);								}
}void BluetoothCMD(int Uart_Receive)
{switch(Uart_Receive){case 90://停止Fore=0,Back=0,Left=0,Right=0;break;case 65://前进Fore=1,Back=0,Left=0,Right=0;break;case 72://左前Fore=1,Back=0,Left=1,Right=0;break;case 66://右前Fore=1,Back=0,Left=0,Right=1;break;case 71://左转Fore=0,Back=0,Left=1,Right=0;break;case 67://右转Fore=0,Back=0,Left=0,Right=1;break;case 69://后退Fore=0,Back=1,Left=0,Right=0;break;case 70://左后,向右旋Fore=0,Back=1,Left=0,Right=1;break;case 68://右后,向左旋Fore=0,Back=1,Left=1,Right=0;break;default://停止Fore=0,Back=0,Left=0,Right=0;break;}
}void Uart2SendByte(char byte)   //串口发送一个字节
{USART_SendData(USART2, byte);        //通过库函数  发送数据while( USART_GetFlagStatus(USART2,USART_FLAG_TC)!= SET);  //等待发送完成。   检测 USART_FLAG_TC 是否置1;    //见库函数 P359 介绍
}void Uart2SendBuf(char *buf, u16 len)
{u16 i;for(i=0; i<len; i++)Uart2SendByte(*buf++);
}
void Uart2SendStr(char *str)
{u16 i,len;len = strlen(str);for(i=0; i<len; i++)Uart2SendByte(*str++);
}

5、中断处理函数

void EXTI9_5_IRQHandler(void) 
{static u8 Voltage_Counter=0;if(PBin(5)==0){EXTI->PR=1<<5;                                          //清除LINE5上的中断标志位   mpu_dmp_get_data(&pitch,&roll,&yaw);		            //得到欧拉角(姿态角)的数据MPU_Get_Gyroscope(&gyrox,&gyroy,&gyroz);				//得到陀螺仪数据Encoder_Left=Read_Encoder(2);                           //读取编码器的值,保证输出极性一致Encoder_Right=-Read_Encoder(3);                         //读取编码器的值Led_Flash(100);Voltage_Counter++;if(Voltage_Counter==20)                                 //100ms读取一次电压{Voltage_Counter=0;Voltage=Get_battery_volt();		                    //读取电池电压}if(KEY_Press(100))										//长按按键切换模式并触发模式切换初始化{if(++CTRL_MODE>=101) CTRL_MODE=97;Mode_Change=1;}Get_RC();Target_Speed=Target_Speed>SPEED_Y?SPEED_Y:(Target_Speed<-SPEED_Y?(-SPEED_Y):Target_Speed);//限幅Turn_Speed=Turn_Speed>SPEED_Z?SPEED_Z:(Turn_Speed<-SPEED_Z?(-SPEED_Z):Turn_Speed);//限幅( (20*100) * 100)Balance_Pwm =balance_UP(pitch,Mechanical_angle,gyroy);   							//===直立环PID控制	Velocity_Pwm=velocity(Encoder_Left,Encoder_Right,Target_Speed);       //===速度环PID控制	 Turn_Pwm =Turn_UP(gyroz,Turn_Speed);        						  //===转向环PID控制Moto1=Balance_Pwm-Velocity_Pwm+Turn_Pwm;                              //===计算左轮电机最终PWMMoto2=Balance_Pwm-Velocity_Pwm-Turn_Pwm;                              //===计算右轮电机最终PWMXianfu_Pwm();  														  //===PWM限幅Turn_Off(pitch,12);													  //===检查角度以及电压是否正常Set_Pwm(Moto1,Moto2);                                                 //===赋值给PWM寄存器  }
}

七、PCB板设计

八、代码开源

1、寄存器版本

链接:=zxf1 
提取码:zxf1 
--来自百度网盘超级会员V2的分享

2、HAL库版本

链接:=zxf1 
提取码:zxf1 
--来自百度网盘超级会员V2的分享

更多推荐

STM32两轮平衡小车原理详解(开源)

本文发布于:2023-11-15 21:04:25,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1606328.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:小车   开源   详解   两轮   原理

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!