[Machine Learning] 多任务学习

编程入门 行业动态 更新时间:2024-10-14 02:18:42

[<a href=https://www.elefans.com/category/jswz/34/1768764.html style=Machine Learning] 多任务学习"/>

[Machine Learning] 多任务学习

文章目录

  • 基于参数的MTL模型 (Parameter-based MTL Models)
  • 基于特征的MTL模型 (Feature-based MTL Models)
    • 基于特征的MTL模型 I:
    • 基于特征的MTL模型 II:
  • 基于特征和参数的MTL模型 (Feature- and Parameter-based MTL Models)


多任务学习 (Multi-task Learning, MTL) 是一种同时学习多个相关问题的方法,它通过利用这些问题之间的相关性来进行学习。


在单任务学习 (Single-Task Learning, STL) 中,每个任务有一个独立的模型,这些模型分别学习不同的任务。这里,每个任务(Task 1, Task 2, Task 3, Task 4)都有它自己的输入和独立的神经网络模型。这些模型不会共享学习到的特征或表示,它们是完全独立的。

在多任务学习中,一个单一的模型共同学习多个任务。模型共享输入层和可能还有一些隐藏层,但在最后,可以有特定于任务的输出层。通过这种方式,模型可以学习到在多个任务间共通的、有用的表示,这可以提升模型在各个任务上的性能,特别是当这些任务相关时。多任务学习还有助于提高数据利用率和学习效率,因为相同的数据和模型参数被用来解决多个问题。

这幅图用来说明的关键点是,在多任务学习中,我们期望通过任务之间的相关性来提升性能,而在单任务学习中,每个任务都是孤立地学习,无法从其他任务中学习到的信息中受益。

当任务彼此独立时,多任务学习与单任务学习相比并无优势。

对于数据不足的问题,当有多个相关任务且每个任务的训练样本有限时,多任务学习是一个很好的解决方案。

设定有 m m m个学习任务 { T i } i = 1 m \{T_i\}_{i=1}^m {Ti​}i=1m​,其中所有任务或其子集彼此相关,多任务学习旨在通过使用 m m m个任务中包含的知识来帮助提高模型对 T i \mathcal{T}_i Ti​的学习。任务 T i \mathcal{T}_i Ti​伴随着一个训练集 D i = { x j i , y j i } j = 1 n i D_i = \{ x_j^i, y_j^i \}_{j=1}^{n_i} Di​={xji​,yji​}j=1ni​​。

我们的任务是为 { T i } i = 1 m \{T_i\}_{i=1}^m {Ti​}i=1m​学习假设。

在MTL中,我们考虑线性假设函数,表示为 h ( x ) = w T x h(x) = w^T x h(x)=wTx。对于 m m m 个不同但相关的任务,即 { T i } i = 1 m \{T_i\}^m_{i=1} {Ti​}i=1m​,我们定义 w i w^i wi 为第 i i i 个任务的假设,其中 i = 1 , … , m i = 1, \ldots, m i=1,…,m。

MTL的经验风险最小化算法表示为:

min ⁡ W = [ w 1 , … , w m ] 1 m ∑ i = 1 m 1 n i ∑ j = 1 n i ℓ ( x j i , y j i , w i ) \min\limits_{W=[w^1,\ldots,w^m]} \frac{1}{m} \sum_{i=1}^{m} \frac{1}{n_i} \sum_{j=1}^{n_i} \ell (x^i_j, y^i_j, w^i) W=[w1,…,wm]min​m1​i=1∑m​ni​1​j=1∑ni​​ℓ(xji​,yji​,wi)

MTL模型通常由两个主要组件组成:参数共享和特征变换。参数共享是指在多个任务间共享模型参数,这样可以使不同任务互相借鉴彼此的信息,从而提高学习效率。特征变换则是指对输入数据进行变换,以找到一个更适合所有任务的表示方式。

基于参数的MTL模型 (Parameter-based MTL Models)

在这种方法中,我们考虑多个相关的任务,并且假设每个任务的假设 w i w^i wi可以表示为一个共同的基础参数 w 0 w_0 w0​加上一个特定任务的偏差 Δ w i \Delta w^i Δwi。这个模型的形式化为:

min ⁡ w 0 , Δ W = [ Δ w 1 , … , Δ w m ] 1 m ∑ i = 1 m 1 n i ∑ j = 1 n i ℓ ( x j i , y j i , w 0 + Δ w i ) \min_{w_0,\Delta W = [\Delta w^1, \ldots, \Delta w^m]} \frac{1}{m} \sum_{i=1}^{m} \frac{1}{n_i} \sum_{j=1}^{n_i} \ell(x^i_j, y^i_j, w_0 + \Delta w^i) w0​,ΔW=[Δw1,…,Δwm]min​m1​i=1∑m​ni​1​j=1∑ni​​ℓ(xji​,yji​,w0​+Δwi)

这里的 ℓ \ell ℓ是损失函数, x j i x^i_j xji​和 y j i y^i_j yji​是第 i i i个任务的第 j j j个训练样本及其标签。

这样,第 i i i个任务的模型参数可以表示为 w i = w 0 + Δ w i w^i = w_0 + \Delta w^i wi=w0​+Δwi。全局参数 w 0 w_0 w0​捕获了所有任务之间的共性,而 Δ w i \Delta w^i Δwi则捕获了任务特有的特性。我们的优化目标是最小化所有任务的总损失,同时尽可能地使得各任务参数相互接近,这通常通过添加一个正则化项 ∥ Δ W ∥ F 2 \|\Delta W\|_F^2 ∥ΔW∥F2​来实现:

min ⁡ w 0 , Δ W = [ Δ w 1 , … , Δ w m ] 1 m ∑ i = 1 m 1 n i ∑ j = 1 n i ℓ ( x j i , y j i , w 0 + Δ w i ) + λ ∥ Δ W ∥ F 2 \min_{w_0,\Delta W = [\Delta w^1, \ldots, \Delta w^m]} \frac{1}{m} \sum_{i=1}^{m} \frac{1}{n_i} \sum_{j=1}^{n_i} \ell(x^i_j, y^i_j, w_0 + \Delta w^i) + \lambda \|\Delta W\|_F^2 w0​,ΔW=[Δw1,…,Δwm]min​m1​i=1∑m​ni​1​j=1∑ni​​ℓ(xji​,yji​,w0​+Δwi)+λ∥ΔW∥F2​

这个模型更好,因为它鼓励多任务学习算法具有更强的相关性。

另一个模型使用秩约束:

min ⁡ W = [ w 1 , … , w m ] 1 m ∑ i = 1 m 1 n i ∑ j = 1 n i ℓ ( x j i , y j i , w i ) + λ rank ( W ) \min\limits_{W=[w^1,\ldots,w^m]} \frac{1}{m} \sum\limits_{i=1}^{m} \frac{1}{n_i} \sum\limits_{j=1}^{n_i} \ell(x^i_j, y^i_j, w^i) + \lambda \text{ rank}(W) W=[w1,…,wm]min​m1​i=1∑m​ni​1​j=1∑ni​​ℓ(xji​,yji​,wi)+λ rank(W)

基于特征的MTL模型 (Feature-based MTL Models)

在基于特征的MTL模型中,假设是从训练样例中学到的:

给定一组数据 D i = { x j i , y j i } j = 1 n i \mathcal{D}_i = \{ x_j^{i}, y_j^{i} \}_{j=1}^{n_i} Di​={xji​,yji​}j=1ni​​,

我们希望通过特征映射使得任务之间更加相关。即,我们希望找到一个投影矩阵 P P P,使得 D i \mathcal{D}_i Di​变换为 D i = { P T x j i , y j i } j = 1 n i \mathcal{D}_i = \{ P^T x_j^{i}, y_j^{i} \}_{j=1}^{n_i} Di​={PTxji​,yji​}j=1ni​​

基于特征的MTL模型 I:

min ⁡ W , P 1 m ∑ i = 1 m 1 n i ∑ j = 1 n i ℓ ( P T x j i , y j i , w i ) + λ rank ( W ) s.t.  P P T = I \min_{W,P} \frac{1}{m} \sum_{i=1}^{m} \frac{1}{n_i} \sum_{j=1}^{n_i} \ell(P^T x_j^{i}, y_j^{i},w^i) + \lambda \text{rank}(W) \text{ s.t. } PP^T = I W,Pmin​m1​i=1∑m​ni​1​j=1∑ni​​ℓ(PTxji​,yji​,wi)+λrank(W) s.t. PPT=I

这个损失函数计算的是映射后的特征与目标值之间的误差,并加入了正则化项以控制权重矩阵W的复杂度。损失函数以 ℓ ( P T x i j , y i j , w i ) \ell(P^T x_i^j, y_i^j, w^i) ℓ(PTxij​,yij​,wi) 表示, x i j x_i^j xij​ 是第i个任务的第j个样本的特征, y i j y_i^j yij​ 是对应的目标值, w i w^i wi 是第i个任务的权重向量, P P P 是一个投影矩阵,使得通过 P T x j i P^T x_j^{i} PTxji​变换后的特征可以更好地为多个任务服务。

λ \lambda λ 是正则化项的权重, rank ( W ) \text{rank}(W) rank(W) 是权重矩阵的秩,用于控制模型的复杂度。

基于特征的MTL模型 II:

这是一个共享隐藏层的神经网络架构,其中隐藏层的节点可以被看作是特征提取器。

对应的优化问题考虑了一个共享参数 w 0 w_0 w0​ 和针对每个任务的调整参数 Δ w i \Delta w_i Δwi​。

这个模型的目标是最小化包含共享参数和任务特定调整的损失函数,并通过 λ ∣ ∣ Δ W ∣ ∣ F 2 \lambda ||\Delta W||_F^2 λ∣∣ΔW∣∣F2​ 正则化每个任务的参数调整量。

隐藏层对于所有任务来说是共享的,这意味着模型可以学习通用的特征表示,而输出层则是特定于任务的。

基于特征和参数的MTL模型 (Feature- and Parameter-based MTL Models)

min ⁡ w 0 , Δ W , P 1 m ∑ i = 1 m 1 n i ∑ j = 1 n i ℓ ( P T x j i , y j i , w 0 + Δ w i ) + λ ∥ Δ W ∥ F 2 s.t.  P P T = I \min_{w_0, \Delta W,P} \frac{1}{m} \sum_{i=1}^{m} \frac{1}{n_i} \sum_{j=1}^{n_i} \ell(P^T x_j^{i}, y_j^{i},w_0 + \Delta w^i) + \lambda \|\Delta W\|_F^2 \text{ s.t. } PP^T = I w0​,ΔW,Pmin​m1​i=1∑m​ni​1​j=1∑ni​​ℓ(PTxji​,yji​,w0​+Δwi)+λ∥ΔW∥F2​ s.t. PPT=I

该模型旨在找到一个跨任务共享的特征投影( P P P)和一组针对所有任务优化的参数( w 0 w_0 w0​ 和 Δ W ΔW ΔW)。

  • 目标函数: min ⁡ w 0 , Δ W , P \min_{w_0, \Delta W,P} minw0​,ΔW,P​ 表示我们的目标是最小化关于 w 0 w_0 w0​(共享参数)、 Δ W \Delta W ΔW(任务特定参数变化)和 P P P(特征投影矩阵)的某个函数。

  • 任务平均: 1 m ∑ i = 1 m \frac{1}{m} \sum_{i=1}^{m} m1​∑i=1m​ 表示我们考虑 m m m 个不同的任务,并对这些任务的结果取平均。

  • 任务内平均**: 对于每个任务 i i i, 1 n i ∑ j = 1 n i \frac{1}{n_i} \sum_{j=1}^{n_i} ni​1​∑j=1ni​​ 用于对该任务中的 n i n_i ni​ 个样本进行平均。

  • 损失函数: ℓ ( P T x j i , y j i , w 0 + Δ w i ) \ell(P^T x_j^{i}, y_j^{i},w_0 + \Delta w^i) ℓ(PTxji​,yji​,w0​+Δwi) 是损失函数,用于量化模型预测 P T x j i P^T x_j^{i} PTxji​(经过特征转换的输入)和真实标签 y j i y_j^{i} yji​ 之间的差异,同时考虑共享参数 w 0 w_0 w0​ 和任务特定参数的调整 Δ w i \Delta w^i Δwi。

  • 正则化项: λ ∥ Δ W ∥ F 2 \lambda \|\Delta W\|_F^2 λ∥ΔW∥F2​ 是正则化项,用于防止过拟合。它通过控制任务特定参数变化的大小(使用Frobenius范数)来实现。

  • 约束条件: P P T = I PP^T = I PPT=I 是一个约束条件,确保投影矩阵 P P P 是正交的。这有助于保持映射后的特征间的独立性。

更多推荐

[Machine Learning] 多任务学习

本文发布于:2023-11-15 10:59:01,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1598513.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:Machine   Learning

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!