pytorch代码实现注意力机制之Flatten Attention

编程入门 行业动态 更新时间:2024-10-27 23:32:06

pytorch代码实现<a href=https://www.elefans.com/category/jswz/34/1769627.html style=注意力机制之Flatten Attention"/>

pytorch代码实现注意力机制之Flatten Attention

Flatten Attention

介绍:最新注意力Flatten Attention:聚焦的线性注意力机制构建视觉 Transformer
在将 Transformer 模型应用于视觉任务时,自注意力机制 (Self-Attention) 的计算复杂度随序列长度的大小呈二次方关系,给视觉任务的应用带来了挑战。各种各样的线性注意力机制 (Linear Attention) 的计算复杂度随序列长度的大小呈线性关系,可以提供一种更有效的替代方案。线性注意力机制通过精心设计的映射函数来替代 Self-Attention 中的 Softmax 操作,但是这种技术路线要么会面临比较严重的性能下降,要么从映射函数中引入额外的计算开销。

本文作者提出一种聚焦线性注意力机制 (Focused Linear Attention),力求实现高效率和高表达力。作者首先分析了是什么导致了线性注意力机制性能的下降?然后归结为了两个方面:聚焦能力 (Focus Ability) 和特征丰富度 (Feature Diversity),然后提出一个简单而有效的映射函数和一个高效的秩恢复模块来增强自我注意的表达能力,同时保持较低的计算复杂度。

原文地址:FLatten Transformer: Vision Transformer using Focused Linear Attention

代码实现

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partialfrom timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from einops.layers.torch import Rearrange
import torch.utils.checkpoint as checkpoint
import numpy as np
import time
from einops import rearrangedef _cfg(url='', **kwargs):return {'url': url,'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,'crop_pct': .9, 'interpolation': 'bicubic','mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,'first_conv': 'patch_embed.proj', 'classifier': 'head',**kwargs}default_cfgs = {'cswin_224': _cfg(),'cswin_384': _cfg(crop_pct=1.0),}class Mlp(nn.Module):def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.act = act_layer()self.fc2 = nn.Linear(hidden_features, out_features)self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return xclass LePEAttention(nn.Module):def __init__(self, dim, resolution, idx, split_size=7, dim_out=None, num_heads=8, attn_drop=0., proj_drop=0.,qk_scale=None):super().__init__()self.dim = dimself.dim_out = dim_out or dimself.resolution = resolutionself.split_size = split_sizeself.num_heads = num_headshead_dim = dim // num_heads# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weightsself.scale = qk_scale or head_dim ** -0.5if idx == -1:H_sp, W_sp = self.resolution, self.resolutionelif idx == 0:H_sp, W_sp = self.resolution, self.split_sizeelif idx == 1:W_sp, H_sp = self.resolution, self.split_sizeelse:print("ERROR MODE", idx)exit(0)self.H_sp = H_spself.W_sp = W_spstride = 1self.get_v = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)self.attn_drop = nn.Dropout(attn_drop)def im2cswin(self, x):B, N, C = x.shapeH = W = int(np.sqrt(N))x = x.transpose(-2, -1).contiguous().view(B, C, H, W)x = img2windows(x, self.H_sp, self.W_sp)x = x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous()return xdef get_lepe(self, x, func):B, N, C = x.shapeH = W = int(np.sqrt(N))x = x.transpose(-2, -1).contiguous().view(B, C, H, W)H_sp, W_sp = self.H_sp, self.W_spx = x.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)x = x.permute(0, 2, 4, 1, 3, 5).contiguous().reshape(-1, C, H_sp, W_sp)  ### B', C, H', W'lepe = func(x)  ### B', C, H', W'lepe = lepe.reshape(-1, self.num_heads, C // self.num_heads, H_sp * W_sp).permute(0, 1, 3, 2).contiguous()x = x.reshape(-1, self.num_heads, C // self.num_heads, self.H_sp * self.W_sp).permute(0, 1, 3, 2).contiguous()return x, lepedef forward(self, qkv):"""x: B L C"""q, k, v = qkv[0], qkv[1], qkv[2]### Img2WindowH = W = self.resolutionB, L, C = q.shapeassert L == H * W, "flatten img_tokens has wrong size"q = self.im2cswin(q)k = self.im2cswin(k)v, lepe = self.get_lepe(v, self.get_v)q = q * self.scaleattn = (q @ k.transpose(-2, -1))  # B head N C @ B head C N --> B head N Nattn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)attn = self.attn_drop(attn)x = (attn @ v) + lepex = x.transpose(1, 2).reshape(-1, self.H_sp * self.W_sp, C)  # B head N N @ B head N C### Window2Imgx = windows2img(x, self.H_sp, self.W_sp, H, W).view(B, -1, C)  # B H' W' Creturn xclass FocusedLinearAttention(nn.Module):def __init__(self, dim, resolution, idx, split_size=7, dim_out=None, num_heads=8, attn_drop=0., proj_drop=0.,qk_scale=None, focusing_factor=3, kernel_size=5):super().__init__()self.dim = dimself.dim_out = dim_out or dimself.resolution = resolutionself.split_size = split_sizeself.num_heads = num_headshead_dim = dim // num_heads# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights# self.scale = qk_scale or head_dim ** -0.5if idx == -1:H_sp, W_sp = self.resolution, self.resolutionelif idx == 0:H_sp, W_sp = self.resolution, self.split_sizeelif idx == 1:W_sp, H_sp = self.resolution, self.split_sizeelse:print("ERROR MODE", idx)exit(0)self.H_sp = H_spself.W_sp = W_spstride = 1self.get_v = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)self.attn_drop = nn.Dropout(attn_drop)self.focusing_factor = focusing_factorself.dwc = nn.Conv2d(in_channels=head_dim, out_channels=head_dim, kernel_size=kernel_size,groups=head_dim, padding=kernel_size // 2)self.scale = nn.Parameter(torch.zeros(size=(1, 1, dim)))self.positional_encoding = nn.Parameter(torch.zeros(size=(1, self.H_sp * self.W_sp, dim)))print('Linear Attention {}x{} f{} kernel{}'.format(H_sp, W_sp, focusing_factor, kernel_size))def im2cswin(self, x):B, N, C = x.shapeH = W = int(np.sqrt(N))x = x.transpose(-2, -1).contiguous().view(B, C, H, W)x = img2windows(x, self.H_sp, self.W_sp)# x = x.reshape(-1, self.H_sp * self.W_sp, C).contiguous()return xdef get_lepe(self, x, func):B, N, C = x.shapeH = W = int(np.sqrt(N))x = x.transpose(-2, -1).contiguous().view(B, C, H, W)H_sp, W_sp = self.H_sp, self.W_spx = x.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)x = x.permute(0, 2, 4, 1, 3, 5).contiguous().reshape(-1, C, H_sp, W_sp)  ### B', C, H', W'lepe = func(x)  ### B', C, H', W'lepe = lepe.reshape(-1, C // self.num_heads, H_sp * W_sp).permute(0, 2, 1).contiguous()x = x.reshape(-1, C, self.H_sp * self.W_sp).permute(0, 2, 1).contiguous()return x, lepedef forward(self, qkv):"""x: B L C"""q, k, v = qkv[0], qkv[1], qkv[2]### Img2WindowH = W = self.resolutionB, L, C = q.shapeassert L == H * W, "flatten img_tokens has wrong size"q = self.im2cswin(q)k = self.im2cswin(k)v, lepe = self.get_lepe(v, self.get_v)# q, k, v = (rearrange(x, "b h n c -> b n (h c)", h=self.num_heads) for x in [q, k, v])k = k + self.positional_encodingfocusing_factor = self.focusing_factorkernel_function = nn.ReLU()scale = nn.Softplus()(self.scale)q = kernel_function(q) + 1e-6k = kernel_function(k) + 1e-6q = q / scalek = k / scaleq_norm = q.norm(dim=-1, keepdim=True)k_norm = k.norm(dim=-1, keepdim=True)q = q ** focusing_factork = k ** focusing_factorq = (q / q.norm(dim=-1, keepdim=True)) * q_normk = (k / k.norm(dim=-1, keepdim=True)) * k_normq, k, v = (rearrange(x, "b n (h c) -> (b h) n c", h=self.num_heads) for x in [q, k, v])i, j, c, d = q.shape[-2], k.shape[-2], k.shape[-1], v.shape[-1]z = 1 / (torch.einsum("b i c, b c -> b i", q, k.sum(dim=1)) + 1e-6)if i * j * (c + d) > c * d * (i + j):kv = torch.einsum("b j c, b j d -> b c d", k, v)x = torch.einsum("b i c, b c d, b i -> b i d", q, kv, z)else:qk = torch.einsum("b i c, b j c -> b i j", q, k)x = torch.einsum("b i j, b j d, b i -> b i d", qk, v, z)feature_map = rearrange(v, "b (h w) c -> b c h w", h=self.H_sp, w=self.W_sp)feature_map = rearrange(self.dwc(feature_map), "b c h w -> b (h w) c")x = x + feature_mapx = x + lepex = rearrange(x, "(b h) n c -> b n (h c)", h=self.num_heads)x = windows2img(x, self.H_sp, self.W_sp, H, W).view(B, -1, C)return xclass CSWinBlock(nn.Module):def __init__(self, dim, reso, num_heads,split_size=7, mlp_ratio=4., qkv_bias=False, qk_scale=None,drop=0., attn_drop=0., drop_path=0.,act_layer=nn.GELU, norm_layer=nn.LayerNorm,last_stage=False,focusing_factor=3, kernel_size=5, attn_type='L'):super().__init__()self.dim = dimself.num_heads = num_headsself.patches_resolution = resoself.split_size = split_sizeself.mlp_ratio = mlp_ratioself.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.norm1 = norm_layer(dim)if self.patches_resolution == split_size:last_stage = Trueif last_stage:self.branch_num = 1else:self.branch_num = 2self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(drop)assert attn_type in ['L', 'S']if attn_type == 'L':if last_stage:self.attns = nn.ModuleList([FocusedLinearAttention(dim, resolution=self.patches_resolution, idx=-1,split_size=split_size, num_heads=num_heads, dim_out=dim,qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,focusing_factor=focusing_factor, kernel_size=kernel_size)for i in range(self.branch_num)])else:self.attns = nn.ModuleList([FocusedLinearAttention(dim // 2, resolution=self.patches_resolution, idx=i,split_size=split_size, num_heads=num_heads // 2, dim_out=dim // 2,qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,focusing_factor=focusing_factor, kernel_size=kernel_size)for i in range(self.branch_num)])else:if last_stage:self.attns = nn.ModuleList([LePEAttention(dim, resolution=self.patches_resolution, idx=-1,split_size=split_size, num_heads=num_heads, dim_out=dim,qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)for i in range(self.branch_num)])else:self.attns = nn.ModuleList([LePEAttention(dim // 2, resolution=self.patches_resolution, idx=i,split_size=split_size, num_heads=num_heads // 2, dim_out=dim // 2,qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)for i in range(self.branch_num)])mlp_hidden_dim = int(dim * mlp_ratio)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer,drop=drop)self.norm2 = norm_layer(dim)def forward(self, x):"""x: B, H*W, C"""H = W = self.patches_resolutionB, L, C = x.shapeassert L == H * W, "flatten img_tokens has wrong size"img = self.norm1(x)qkv = self.qkv(img).reshape(B, -1, 3, C).permute(2, 0, 1, 3)if self.branch_num == 2:x1 = self.attns[0](qkv[:, :, :, :C // 2])x2 = self.attns[1](qkv[:, :, :, C // 2:])attened_x = torch.cat([x1, x2], dim=2)else:attened_x = self.attns[0](qkv)attened_x = self.proj(attened_x)x = x + self.drop_path(attened_x)x = x + self.drop_path(self.mlp(self.norm2(x)))return xdef img2windows(img, H_sp, W_sp):"""img: B C H W"""B, C, H, W = img.shapeimg_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C)return img_permdef windows2img(img_splits_hw, H_sp, W_sp, H, W):"""img_splits_hw: B' H W C"""B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)return imgclass Merge_Block(nn.Module):def __init__(self, dim, dim_out, norm_layer=nn.LayerNorm):super().__init__()self.conv = nn.Conv2d(dim, dim_out, 3, 2, 1)self.norm = norm_layer(dim_out)def forward(self, x):B, new_HW, C = x.shapeH = W = int(np.sqrt(new_HW))x = x.transpose(-2, -1).contiguous().view(B, C, H, W)x = self.conv(x)B, C = x.shape[:2]x = x.view(B, C, -1).transpose(-2, -1).contiguous()x = self.norm(x)return xclass CSWinTransformer(nn.Module):""" Vision Transformer with support for patch or hybrid CNN input stage"""def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=96, depth=[2, 2, 6, 2],split_size=[1, 2, 7, 7], la_split_size='1-2-7-7',num_heads=[2, 4, 8, 16], mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0.,drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, use_chk=False,focusing_factor=3, kernel_size=5, attn_type='LLLL'):super().__init__()# split_size = [1, 2, img_size // 32, img_size // 32]la_split_size = la_split_size.split('-')self.use_chk = use_chkself.num_classes = num_classesself.num_features = self.embed_dim = embed_dim  # num_features for consistency with other modelsheads = num_headsself.stage1_conv_embed = nn.Sequential(nn.Conv2d(in_chans, embed_dim, 7, 4, 2),Rearrange('b c h w -> b (h w) c', h=img_size // 4, w=img_size // 4),nn.LayerNorm(embed_dim))curr_dim = embed_dimdpr = [x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))]  # stochastic depth decay ruleattn_types = [(attn_type[0] if attn_type[0] != 'M' else ('L' if i < int(attn_type[4:]) else 'S')) for i in range(depth[0])]split_sizes = [(int(la_split_size[0]) if attn_types[i] == 'L' else split_size[0]) for i in range(depth[0])]self.stage1 = nn.ModuleList([CSWinBlock(dim=curr_dim, num_heads=heads[0], reso=img_size // 4, mlp_ratio=mlp_ratio,qkv_bias=qkv_bias, qk_scale=qk_scale,split_size=split_sizes[i],drop=drop_rate, attn_drop=attn_drop_rate,drop_path=dpr[i], norm_layer=norm_layer,focusing_factor=focusing_factor, kernel_size=kernel_size,attn_type=attn_types[i])for i in range(depth[0])])self.merge1 = Merge_Block(curr_dim, curr_dim * 2)curr_dim = curr_dim * 2attn_types = [(attn_type[1] if attn_type[1] != 'M' else ('L' if i < int(attn_type[4:]) else 'S')) for i in range(depth[1])]split_sizes = [(int(la_split_size[1]) if attn_types[i] == 'L' else split_size[1]) for i in range(depth[1])]self.stage2 = nn.ModuleList([CSWinBlock(dim=curr_dim, num_heads=heads[1], reso=img_size // 8, mlp_ratio=mlp_ratio,qkv_bias=qkv_bias, qk_scale=qk_scale,split_size=split_sizes[i],drop=drop_rate, attn_drop=attn_drop_rate,drop_path=dpr[np.sum(depth[:1]) + i], norm_layer=norm_layer,focusing_factor=focusing_factor, kernel_size=kernel_size,attn_type=attn_types[i])for i in range(depth[1])])self.merge2 = Merge_Block(curr_dim, curr_dim * 2)curr_dim = curr_dim * 2attn_types = [(attn_type[2] if attn_type[2] != 'M' else ('L' if i < int(attn_type[4:]) else 'S')) for i in range(depth[2])]split_sizes = [(int(la_split_size[2]) if attn_types[i] == 'L' else split_size[2]) for i in range(depth[2])]temp_stage3 = []temp_stage3.extend([CSWinBlock(dim=curr_dim, num_heads=heads[2], reso=img_size // 16, mlp_ratio=mlp_ratio,qkv_bias=qkv_bias, qk_scale=qk_scale,split_size=split_sizes[i],drop=drop_rate, attn_drop=attn_drop_rate,drop_path=dpr[np.sum(depth[:2]) + i], norm_layer=norm_layer,focusing_factor=focusing_factor, kernel_size=kernel_size,attn_type=attn_types[i])for i in range(depth[2])])self.stage3 = nn.ModuleList(temp_stage3)self.merge3 = Merge_Block(curr_dim, curr_dim * 2)curr_dim = curr_dim * 2attn_types = [(attn_type[3] if attn_type[3] != 'M' else ('L' if i < int(attn_type[4:]) else 'S')) for i in range(depth[3])]split_sizes = [(int(la_split_size[3]) if attn_types[i] == 'L' else split_size[3]) for i in range(depth[3])]self.stage4 = nn.ModuleList([CSWinBlock(dim=curr_dim, num_heads=heads[3], reso=img_size // 32, mlp_ratio=mlp_ratio,qkv_bias=qkv_bias, qk_scale=qk_scale,split_size=split_sizes[i],drop=drop_rate, attn_drop=attn_drop_rate,drop_path=dpr[np.sum(depth[:-1]) + i], norm_layer=norm_layer, last_stage=True,focusing_factor=focusing_factor, kernel_size=kernel_size,attn_type=attn_types[i])for i in range(depth[-1])])self.norm = norm_layer(curr_dim)# Classifier headself.head = nn.Linear(curr_dim, num_classes) if num_classes > 0 else nn.Identity()trunc_normal_(self.head.weight, std=0.02)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)@torch.jit.ignoredef no_weight_decay(self):return {'pos_embed', 'cls_token'}def get_classifier(self):return self.headdef reset_classifier(self, num_classes, global_pool=''):if self.num_classes != num_classes:print('reset head to', num_classes)self.num_classes = num_classesself.head = nn.Linear(self.out_dim, num_classes) if num_classes > 0 else nn.Identity()self.head = self.head.cuda()trunc_normal_(self.head.weight, std=.02)if self.head.bias is not None:nn.init.constant_(self.head.bias, 0)def forward_features(self, x):B = x.shape[0]x = self.stage1_conv_embed(x)for blk in self.stage1:if self.use_chk:x = checkpoint.checkpoint(blk, x)else:x = blk(x)for pre, blocks in zip([self.merge1, self.merge2, self.merge3],[self.stage2, self.stage3, self.stage4]):x = pre(x)for blk in blocks:if self.use_chk:x = checkpoint.checkpoint(blk, x)else:x = blk(x)x = self.norm(x)return torch.mean(x, dim=1)def forward(self, x):x = self.forward_features(x)x = self.head(x)return xdef _conv_filter(state_dict, patch_size=16):""" convert patch embedding weight from manual patchify + linear proj to conv"""out_dict = {}for k, v in state_dict.items():if 'patch_embed.proj.weight' in k:v = v.reshape((v.shape[0], 3, patch_size, patch_size))out_dict[k] = vreturn out_dict### 224 modelsdef FLatten_CSWin_64_24181_tiny_224(pretrained=False, **kwargs):model = CSWinTransformer(patch_size=4, embed_dim=64, depth=[2, 4, 18, 1],split_size=[1, 2, 7, 7], num_heads=[2, 4, 8, 16], mlp_ratio=4., **kwargs)model.default_cfg = default_cfgs['cswin_224']return modeldef FLatten_CSWin_64_24322_small_224(pretrained=False, **kwargs):model = CSWinTransformer(patch_size=4, embed_dim=64, depth=[2, 4, 32, 2],split_size=[1, 2, 7, 7], num_heads=[2, 4, 8, 16], mlp_ratio=4., **kwargs)model.default_cfg = default_cfgs['cswin_224']return modeldef FLatten_CSWin_96_36292_base_224(pretrained=False, **kwargs):model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[3, 6, 29, 2],split_size=[1, 2, 7, 7], num_heads=[4, 8, 16, 32], mlp_ratio=4., **kwargs)model.default_cfg = default_cfgs['cswin_224']return model### 384 modelsdef FLatten_CSWin_96_36292_base_384(pretrained=False, **kwargs):model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[3, 6, 29, 2],split_size=[1, 2, 12, 12], num_heads=[4, 8, 16, 32], mlp_ratio=4., **kwargs)model.default_cfg = default_cfgs['cswin_384']return model

更多推荐

pytorch代码实现注意力机制之Flatten Attention

本文发布于:2023-11-15 09:16:09,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1597293.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:注意力   机制   代码   pytorch   Flatten

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!