Halcon表面检测---高度纹理图像中的mura缺陷

编程入门 行业动态 更新时间:2024-10-24 08:19:23

对应示例程序:
detect_mura_defects_texture.hdev

目标:实现高纹理图像中缺陷的检测(黑色)。

思路为:
1.对彩色图像进行R G B分解,选取B作为后续图像。
2. 生成背景模板,将图像傅里叶变换到频域中,通过高斯滤波,然后傅里叶反变换回来,得到的图像就是背景模板。
3 .背景差分。采用sub_image函数进行图像差分,增强两幅图像的差异
4 .分水岭算法分割,在分割之前采用中值滤波来抑制小斑点或细线。分水岭后,图像分割为多个轮廓(region)。
5 .计算多个轮廓region的灰度信息,包括能量。相关度、同一度、对比度,通过灰度共生矩阵。 前面的两个参数是灰度级和方向,灰度级是2^,方向即灰度共生矩阵方向。
6 .根据能量信息对多个region进行筛选,筛选后的region就是检测结果。黑色区域的能量较低

      判断能量是否大于0.05,通过sgn函数将大于0.05的置1,小于的置-1。通过tuple_find在(Energy-0.05).Sgn()中寻找-1出现的位置,注意这个位置是从0开始的。貌似这个是经过人为排序的,所以indices 中就是前三个 0 1 2
      select_obj (Basins, &Defects, new_Indices);是从Basins提取序号为new_Indices的region 。为什么重新定义一个HTuple 因为HTuple实际上是个数组。find后得到的就是一个indices 数组,里面存在三个数。
      select_obj 的参数必须是HTuple,也就是数组,所以只能重新定义,而且序号从1开始,因此要加1,只能获取数组中的值加1,获取的代码为new_Indices[0]=Indices[i].I()+1; 也就是说数组中的值可以直接访问,然后转化为需要的类型。

图像:

代码:

* 多纹理图像中找缺陷
dev_close_window ()
dev_update_off ()
Path := 'lcd/mura_defects_texture_'
read_image (Image, Path + '01')
get_image_size (Image, Width, Height)
dev_open_window (0, 0, 640, 480, 'black', WindowHandle)
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')
dev_set_draw ('margin')
dev_set_line_width (3)
dev_set_color ('red')
for f := 1 to 2 by 1
    read_image (Image, Path + f$'.2i')
    decompose3 (Image, R, G, B)
    *图像中的缺陷是黑色的,为了突出缺陷,通过生成背景照明图像进行增强
    estimate_background_illumination (B, ImageFFT1)
    sub_image (B, ImageFFT1, ImageSub, 2, 100)
    *中值滤波进行降噪
    median_image (ImageSub, ImageMedian, 'circle', 9, 'mirrored')
    watersheds_threshold (ImageMedian, Basins, 20)//分水岭算法分割
    *黑色缺陷的能量较低
    *计算共生矩阵并导出其灰度值特征    
    cooc_feature_image (Basins, ImageMedian, 6, 0, Energy, Correlation, Homogeneity, Contrast)
    tuple_find (sgn(Energy - 0.05), -1, Indices)
    select_obj (Basins, Defects, Indices + 1)
    * 
    dev_display (Image)
    dev_display (Defects)
    count_obj (Defects, NDefects)//计算obj的数量
    disp_message (WindowHandle, NDefects + ' \'mura\' defects detected', 'window', -1, -1, 'red', 'true')
    if (f < 2)
        disp_continue_message (WindowHandle, 'black', 'true')
        stop ()
    endif
endfor


用到的几个算子:
      estimate_background_illumination -本地函数 用来估计生成背景图像
      将图像傅里叶变换到频域中,通过高斯滤波,然后傅里叶反变换回来,得到的图像就是背景模板

      cooc_feature_image - 计算共生矩阵并导出其灰度值特征。

参考资料:
[1]: https://wwwblogs/wwwbdabc/p/11087850.html
[2]: https://wwwblogs/xhiong/p/cooc_feature_image.html

更多推荐

Halcon表面检测---高度纹理图像中的mura缺陷

本文发布于:2023-06-14 05:54:00,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/34/1444814.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:纹理   缺陷   图像   表面   高度

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!