计算机网络实验总结

编程知识 更新时间:2023-04-30 00:23:06

实验一:验证性试验

ipconfig

ipconfig 是微软操作系统的计算机上用来控制网络连接的一个命令行工具。它的主要用来显示当前网络连接的配置信息(/all 参数)。

实作一

使用 ipconfig/all 查看自己计算机的网络配置,尽可能明白每行的意思,特别注意 IP 地址、子网掩码 Subnet Mask、网关 Gateway。

(此图是连接的热点wifi,因此具有临时租约时间)目前可以观察到的比如手机临时的热点对电脑的临时租约就是一个小时(这个一步骤)也可以不只是一个小时。比如一个半

在一个小时过后如果没有断开应该会重新在给一次租约时间。

查看本机ip地址首选是ipv4其次是ipv6,(目前ipv4活力依旧强大)
区别:一个是32位一个是128位,前者用得是逗号,后者是冒号
(这里可以记一下大概数据ipv4有40亿个)
(ipv6各方面是比较好的,但是因为ipv4和ipv6相互无法通信,从4过渡到6的时间很长,所以解释上边为什么ipv4活力依旧)

子网掩码(分配的虚拟ip解决ip地址资源紧缺针对ipv4):A、B、C三类地址划分为若干子网,此时本电脑是自动缺省没有自定义的。

网关:例如一个院子里很多小孩,要出大门进行信息沟通就需要给门卫信息说要出去,门卫即是网关(一台主机可以具有多个网关)

物理地址即是mac地址,用来标记网络中设备,(一般只处于当前局域网络有效)

实作二

使用 ipconfig/all 查看旁边计算机的网络配置,看看有什么异同。

此时我切换到了校园网,可以确定是与其他计算机处于同一子网之下的。可以通关ip地址,子网掩码以及网关对比发现。如果是同一子网之下我与他流出的网关应该是同一个。

ping

PING (Packet Internet Groper),因特网包探索器,用于测试网络连接量的程序 。ping 是工作在 TCP/IP 网络体系结构中应用层的一个服务命令, 主要是向特定的目的主机发送 ICMP(Internet Control Message Protocol 因特网报文控制协议)Echo 请求报文,测试目的站是否可达及了解其有关状态。

实作一

要测试到某计算机如 重庆交通大学 Web 服务器的连通性,可以使用 ping www.cqjtu.edu 命令,也可直接使用 IP 地址。

请掌握使用该命令后屏幕显示的反馈回来信息的意思,如:TTL、时间等。

此处尝试了ping了4次。其中TTL(8bit字段-ipv4)代表了ping发出去的那个测试数据具有的生命周期。计算方法为ttl向上最接近的2的n次方。例如此处最接近64.64-58=6.说明从主机到以上www.cqjtu这个地址经过了6次跳转。生命周期还有58。每跳一次就减1。

时间就代表了从主机到那个地址经过的时间就是延迟。

实作二

使用 ping/? 命令了解该命令的各种选项并实际使用。

假设你不能 ping 通某计算机或 IP,但你确定该计算机和你之间的网络是连通的,那么可能的原因是什么?该如何处理能保证 ping 通?

  1. 可能设置了防火墙,把网络设置成专用不是公共状态。

  2. 如果是内部网ping外部网,没有权限

保证ping联通方法:由近及远测试连通性。首先可以测试自己网卡ping自己看看数据是否传输成功,首先验证自身电脑问题。之后在ping内部子网,之后再是网关,看是否成功,然后逐一测试连通性。

问题:

  1. 假设在秘籍中进行的网络排查中,ping 百度的 IP 即 ping 14.215.177.39 没问题,但 ping 百度的域名即 ping www.baidu 不行,那么可能的原因是什么?如何进行验证和解决?
  2. 另外,经常有同学问到的:“能上 QQ,但不能上网” 跟这个问题的原因是相似的。

回答:
能ping通ip,说明网络是通的。域名ping不通,说明域名解析可能有问题

检查dns服务器配置问题,比如在网络属性里边的dns没有设置好。

tracert

TRACERT (Trace Route 的组合缩写),也称为路由追踪,该命令行程序可用于跟踪 Internet 协议 (IP) 数据包传送到目标地址时经过的路径。

实作一

要了解到某计算机如 www.baidu 中间经过了哪些节点(路由器)及其它状态,可使用 tracert www.baidu 命令,查看反馈的信息,了解节点的个数。

可通过网站 http://ip 查看这些节点位于何处,是哪个公司的,大致清楚本机到百度服务器之间的路径。

222.176.65.185 中国 重庆 重庆市 电信

113.96.4.162 中国 广东省 广州市 电信

通过ip查。

实作二

ping.pe 这个网站可以探测从全球主要的 ISP 到某站点如 https://qige.io 的线路状态,当然也包括各线路到该主机的路由情况。请使用浏览器访问 http://ping.pe/qige.io 进行了解。

问题一

tracert 能告诉我们路径上的节点以及大致的延迟等信息,那么它背后的原理是什么?本问题可结合第二部分的 Wireshark 实验进行验证。

原理:
向不同ip发送具有TTL值生命周期的数据包(ICMP),在路径上每一次路由器转发数据包都要把TTL减小一个,当TTL减为零的时候,路由器发送一个已超时的信息返回发出地址源头,或者在路途中找到了目的地址也会返回信息。

问题二

在以上两个实作中,如果你留意路径中的节点,你会发现无论是访问百度还是棋歌教学网,路径中的第一跳都是相同的,甚至你应该发现似乎前几个节点都是相同的,你的解释是什么?

回答:
因为在子网下,想要进入互联网都需要经过相同的网关,如果是校园网的话经历相同的节点或许会更多。

问题三

在追踪过程中,你可能会看到路径中某些节点显示为 * 号,这是发生了什么?

回答:
节点没有进行信息的反馈则会返回*,也有可能是路由节点出现了问题。

ARP

ARP(Address Resolution Protocol)即地址解析协议,是用于根据给定网络层地址即 IP 地址,查找并得到其对应的数据链路层地址即 MAC地址的协议。 ARP 协议定义在 1982 年的 RFC 826。

实作一

运行 arp -a 命令查看当前的 arp 缓存, 请留意缓存了些什么。

然后 ping 一下你旁边的计算机 IP(注意,需保证该计算机的 IP 没有出现在 arp 缓存中,或者使用 arp -d * 先删除全部缓存),再次查看缓存,你会发现一些改变,请作出解释。

将IP地址解析为MAC地址的协议,缓存了静态以及动态的mac地址。有一个为arp攻击,针对动态的地址,自己的电脑可以模拟动态地址拦截需要被发送到目的地的信息。静态地址不起作用。

Ping了一个为10.161.82.124的地址(之前没有出现过)(请求超时了),不过在后续的arp –a 中出现了这个地址。说明arp缓存会记住这个被ping的地址,为了方便下一次更快速的连接到他。

实作二

请使用 arp /? 命令了解该命令的各种选项

实作三

一般而言,arp 缓存里常常会有网关的缓存,并且是动态类型的。

假设当前网关的 IP 地址是 192.168.0.1,MAC 地址是 5c-d9-98-f1-89-64,请使用 arp -s 192.168.0.1 5c-d9-98-f1-89-64 命令设置其为静态类型的。

你可能会在实作三的操作中得到 “ARP 项添加失败: 请求的操作需要提升” 这样的信息,表示命令没能执行成功,你该如何解决?

netsh i i show in找到指定Idx

netsh -c “i i” add neighbors 【Idx】 【IP地址】【mac地址】修改指定IP的mac(这一段是在百度搜索的答案,无效)

自己的方法简单说就是没有更高级的权限,在打开cmder的时候用管理员权限打开就可以了。

问题

在实作三中,为何缓存中常常有网关的信息?

我们将网关或其它计算机的 arp 信息设置为静态有什么优缺点?

在进行数据传输的时候通常需要经过多个网关,arp会自动记录网关的信息方便下次进行数据传输的时候快速找到网关地址。

优点:如上述提到的防止arp欺骗,提高了安全性

缺点:难以维护arp列表,如果有一个错误的信息很难将它分别出来。毕竟静态的信息是在太多了,不像动态的就那么几个很容易清理和调试。

DHCP

DHCP(Dynamic Host Configuration Protocol)即动态主机配置协议,是一个用于 IP 网络的网络协议,位于 OSI 模型的应用层,使用 UDP 协议工作,主要有两个用途:

  • 用于内部网或网络服务供应商自动分配 IP 地址给用户
  • 用于内部网管理员对所有电脑作中央管理

简单的说,DHCP 可以让计算机自动获取/释放网络配置。

实作一

一般地,我们自动获取的网络配置信息包括:IP 地址、子网掩码、网关 IP 以及 DNS 服务器 IP 等。使用 ipconfig/release 命令释放自动获取的网络配置,并用 ipconfig/renew 命令重新获取,了解 DHCP 工作过程和原理。

已成功释放

例如这一段获得租约和租约过期时间

TroubleShooting

如果你没能成功的释放,请思考有哪些可能的原因并着手进行解决?

可能网卡硬件上损坏了

路由未开启DHCP模块

解决方法:

  1. 检查硬件是否正常运行

  2. 开启DHCP模块

问题

在Windows系统下,如果由于某种原因计算机不能获取 DHCP 服务器的配置数据,那么Windows将会根据某种算法自动配置为 169.254.x.x 这样的 IP 地址。显然,这样的 IP 以及相关的配置信息是不能让我们真正接入 Internet 的,为什么?既然不能接入 Internet,那么Winodws系统采用这样的方案有什么意义?

回答:
为了让DHCP故障的设备不因为没有ip而被连接不上。169.254.x.x是链路本地地址是本地网络进行连接的,并不是为了连接上Internet的。

秘籍
在我校不少地方如教室,计算机都采用了 DHCP 来获得网络配置。假如某天因 DHCP 服务器问题从而不能获得网络配置,那么我们可以查看隔壁教室计算机的配置信息来手动进行网络配置,从而使该计算机能够接入 Internet。

问题
经常的,在一个固定地方的网络配置我都喜欢采用 静态/手动配置,而不是动态 DHCP 来进行。你能想到是什么原因吗?

原因:因为DHCP故障后进行本地网络连接是需要算法自动的生成的,并且动态地址是可以随时进行变化的,此时如果设置成静态手动配置相当于直接在本地网络里占用了一个永久性的地址不需要再次分配静态地址。

netstat

无论是使用 TCP 还是 UDP,任何一个网络服务都与特定的端口(Port Number)关联在一起。因此,每个端口都对应于某个通信协议/服务。

netstat(Network Statistics)是在内核中访问网络连接状态及其相关信息的命令行程序,可以显示路由表、实际的网络连接和网络接口设备的状态信息,以及与 IP、TCP、UDP 和 ICMP 协议相关的统计数据,一般用于检验本机各端口的网络服务运行状况。

实作一

Windows 系统将一些常用的端口与服务记录在 C:\WINDOWS\system32\drivers\etc\services 文件中,请查看该文件了解常用的端口号分配。

实作二

使用 netstat -an 命令,查看计算机当前的网络连接状况。更多的 netstat 命令选项,可参考上面链接 45

DNS

DNS(Domain Name System)即域名系统,是互联网的一项服务。它作为将域名和 IP 地址相互映射的一个分布式数据库,能够使人更方便地访问互联网。DNS 使用 TCP 和 UDP 的 53 号端口。

实作一

Windows 系统将一些固定的/静态的 DNS 信息记录在 C:\WINDOWS\system32\drivers\etc\hosts 文件中,如我们常用的 localhost 就对应 127.0.0.1 。请查看该文件看看有什么记录在该文件中。

实作二

解析过的 DNS 记录将会被缓存,以利于加快解析速度。请使用 ipconfig /displaydns 命令查看。我们也可以使用 ipconfig /flushdns 命令来清除所有的 DNS 缓存。

实作三

使用 nslookup qige.io 命令,将使用默认的 DNS 服务器查询该域名。当然你也可以指定使用 CloudFlare1.1.1.1)或 Google8.8.8.8) 的全球 DNS 服务器来解析,如:`nslookup qige.io 8.8.8.8``,当然,由于你懂的原因,这不一定会得到正确的答案。```

在此处dns超时了。在非权威应答里边地址还是一样的

秘籍
当我们使用浏览器上网时,或多或少的会看到一些广告。某些网站的广告是非常没有节操的,所以我们一般可以通过安装浏览器插件如 AdGuard、AdBlocker 等来拦截和过滤。

这种方法简单方便有效,不过有一定安全或隐私问题,因为该插件实时知道你访问的 URL。

假设不使用这种第三方的插件,希望自己完全控制,那么就请考虑在我们前面提到的 hosts 文件中添加 DNS 记录。有自愿者时时在维护全球正确的 DNS 记录文件

TroubleShooting

上面秘籍中我们提到了使用插件或自己修改 hosts 文件来屏蔽广告,思考一下这种方式为何能过滤广告?如果某些广告拦截失效,那么是什么原因?你应该怎样进行分析从而能够成功屏蔽它

回答:这个方式我觉得像是hosts文件在调用dns前截胡了,如果hosts里边有这个需要访问的ip就直接进入,不需要进入dns这个类似数据库一样的地方调用。

使用hosts修改后不生效原因:服务器设置了keep-alive,保持了长连接,只要不断开页面就不会重新解析域名

Cache

cache 即缓存,是 IT 领域一个重要的技术。我们此处提到的 cache 主要是浏览器缓存。

浏览器缓存是根据 HTTP 报文的缓存标识进行的,是性能优化中简单高效的一种优化方式了。一个优秀的缓存策略可以缩短网页请求资源的距离,减少延迟,并且由于缓存文件可以重复利用,还可以减少带宽,降低网络负荷。

实作一

打开 Chrome 或 Firefox 浏览器,访问 https://qige.io ,接下来敲 F12 键 或 Ctrl + Shift + I 组合键打开开发者工具,选择 Network 面板后刷新页面,你会在开发者工具底部看到加载该页面花费的时间。请进一步查看哪些文件被 cache了,哪些没有。

实作二

接下来仍在 Network 面板,选择 Disable cache 选项框,表明当前不使用 cache,页面数据全部来自于 Internet,刷新页面,再次在开发者工具底部查看加载该页面花费的时间。你可比对与有 cache 时的加载速度差异。

发现在加载的时候并不是图片显现速度变慢了,甚至刷新的时候有顿挫感图片是一张一张出现的

2. Wireshark 实验

数据链路层

实作一 熟悉 Ethernet 帧结构

使用 Wireshark 任意进行抓包,熟悉 Ethernet 帧的结构,如:目的 MAC、源 MAC、类型、字段等。

Ethernet结构:

前导码帧前定界符目的地址DA源地址SA类型字段数据字段帧校验字段
7B(56位的字节)1B(8位)6B6B2B46~1500B4B

目的MAC:26:fb:a7:f1:2c:bb

源MAC: a0:a4:c5:71:b3:f3

类型:IPV4(0x0000)

(地址长度为6B(即48位))都是十六进制表示

注意:这里有三种目的地址:单播地址,多播地址,广播地址

他们区分的方法:单:目的地址第一位为0,多:第一位为1,广播:全为1

这里的话是100110,,为单播。

问题

你会发现 Wireshark 展现给我们的帧中没有校验字段,请了解一下原因。

抓包软件抓到的是去掉前导同步码、帧开始分界符、FCS之外的数据,原因:

在物理层上网卡要先去掉前导同步码和帧开始定界符,然后对帧进行CRC检验,如果帧校验和错,就丢弃此帧。如果校验和正确,就判断帧的目 的硬件地址是否符合自己的接收条件,如果符合,就将帧交“设备驱动程序”做进一步处 理。这时我们的抓包软件才能抓到数据

重点:前导同步码和帧开始定界符被去掉

实作二 了解子网内/外通信时的 MAC 地址

  1. ping 你旁边的计算机(同一子网),同时用 Wireshark 抓这些包(可使用 icmp 关键字进行过滤以利于分析),记录一下发出帧的目的 MAC 地址以及返回帧的源 MAC 地址是多少?这个 MAC 地址是谁的?

  1. 10.160.255.254这个是我查询的网关

    原地址是我自己的ip10.161.233.231

  2. 然后 ping qige.io (或者本子网外的主机都可以),同时用 Wireshark 抓这些包(可 icmp 过滤),记录一下发出帧的目的 MAC 地址以及返回帧的源 MAC 地址是多少?这个 MAC 地址是谁的?

在这里我用得是自己的手机流量的wifi所以ip地址变了


本来是想ping qige.io但是icmp不显示就ping了百度

目的mac:14.215.177.38应该是广东的百度的地址

原mac:192.168.194.32这里是自己的

3.再次 ping www.cqjtu.edu (或者本子网外的主机都可以),同时用 Wireshark 抓这些包(可 icmp 过滤),记录一下发出帧的目的 MAC 地址以及返回帧的源 MAC 地址又是多少?这个 MAC 地址又是谁的?

此处我ping了一下搜狗的地址,与上边一样,都是源mac是自己的ip地址,目的地址是搜狗的ip地址。

主要是了解了在ping(连接)本子网下的主机和不在本子网的主机的目的mac和源mac地址的判断。本子网下就直接主机对主机,外网就是主机对网关。

实作三 掌握 ARP 解析过程

1.为防止干扰,先使用 arp -d * 命令清空 arp 缓存

这里遇到了与之前相同的情况就是需要提升权限

解决方法:用管理员权限打开cmder就可以正确运行arp –d *

2.ping 你旁边的计算机(同一子网),同时用 Wireshark 抓这些包(可 arp 过滤),查看 ARP 请求的格式以及请求的内容,注意观察该请求的目的 MAC 地址是什么。再查看一下该请求的回应,注意观察该回应的源 MAC 和目的 MAC 地址是什么。

目的mac就是ping 的主机的物理地址

源mac就是我自己的物理地址

3.再次使用 arp -d * 命令清空 arp 缓存

已完成

然后 ping qige.io (或者本子网外的主机都可以),同时用 Wireshark 抓这些包(可 arp 过滤)。查看这次 ARP 请求的是什么,注意观察该请求是谁在回应。

都是以广播的形式发送的

这里外网解析的是网关的物理地址

网络层

实作一 熟悉 IP 包结构

使用 Wireshark 任意进行抓包(可用 ip 过滤),熟悉 IP 包的结构,如:版本、头部长度、总长度、TTL、协议类型等字段。

通常是这个为版本号ipv4

首部长度 占4位,可表示的最大十进制数值是15,

总长度:首部和数据之和的长度,单位为字节。总长度字段为16位,因此数据报的最大长度为2^16-1=65535字节。

TTL:生存时间(跳转节点数量表示)

协议 占8位

源地址 占32位

目的地址 占32位

问题

为提高效率,我们应该让 IP 的头部尽可能的精简。但在如此珍贵的 IP 头部你会发现既有头部长度字段,也有总长度字段。请问为什么?

首部长度字段表示IP首部的总长度,其中包括选项字段,这个可有可无,选项字段用来支持排错、测量以及安全等措施,像是记录路由啊,松散路由,严格路由,时间戳什么的。

总长度字段是整个ip包的长度,直接明了。

实作二 IP 包的分段与重组

根据规定,一个 IP 包最大可以有 64K 字节。但由于 Ethernet 帧的限制,当 IP 包的数据超过 1500 字节时就会被发送方的数据链路层分段,然后在接收方的网络层重组。

缺省的,ping 命令只会向对方发送 32 个字节的数据。我们可以使用 ping 202.202.240.16 -l 2000 命令指定要发送的数据长度。此时使用 Wireshark 抓包(用 ip.addr == 202.202.240.16 进行过滤),了解 IP 包如何进行分段,如:分段标志、偏移量以及每个包的大小等

这是icmp里的图

发现一共2008个字节被分成1480和528

Total length就是这个包的总长

这里是ipv4里边的发现为001,1就代表了还有被分段的包,分段标志0x20

问题

分段与重组是一个耗费资源的操作,特别是当分段由传送路径上的节点即路由器来完成的时候,所以 IPv6 已经不允许分段了。那么 IPv6 中,如果路由器遇到了一个大数据包该怎么办?

\1. 转发到支持传输这个数据包的链路2.丢弃这个大数据包

实作三 考察 TTL 事件

在 IP 包头中有一个 TTL 字段用来限定该包可以在 Internet上传输多少跳(hops),一般该值设置为 64、128等。

在验证性实验部分我们使用了 tracert 命令进行路由追踪。其原理是主动设置 IP 包的 TTL 值,从 1 开始逐渐增加,直至到达最终目的主机。

请使用 tracert www.baidu 命令进行追踪,此时使用 Wireshark 抓包(用 icmp 过滤),分析每个发送包的 TTL 是如何进行改变的,从而理解路由追踪原理。

在黑色的一行中每次ttl加了1过后都会变,且正好对应在命令行里追踪的地址,说明每一次跳转都会使ttl加一,在黑色的行里返回的地点都是本机。

问题

在 IPv4 中,TTL 虽然定义为生命期即 Time To Live,但现实中我们都以跳数/节点数进行设置。如果你收到一个包,其 TTL 的值为 50,那么可以推断这个包从源点到你之间有多少跳?

如果是得到了ttl为50则,64-50=14有14跳

传输层

实作一 熟悉 TCP 和 UDP 段结构

1.用 Wireshark 任意抓包(可用 tcp 过滤),熟悉 TCP 段的结构,如:源端口、目的端口、序列号、确认号、各种标志位等字段。


源端口:443

目标端口:59518

序列号sequence :1

确认号Acknowledgment:1

标志位:0x010 (ack)

TCP的状态 (SYN, FIN, ACK, PSH, RST, URG)

SYN表示建立连接,

FIN表示关闭连接,

ACK表示响应,

PSH表示有 DATA数据传输,

RST表示连接重置。

2.用 Wireshark 任意抓包(可用 udp 过滤),熟悉 UDP 段的结构,如:源端口、目的端口、长度等。

源端口:53

目的端口:55763

长度69

问题

由上大家可以看到 UDP 的头部比 TCP 简单得多,但两者都有源和目的端口号。请问源和目的端口号用来干什么?

Tcp/ip是一个协议簇。可以理解成一个群吧,有很多协议tcp和udp是包含于其中的。Tcp是建立连接的,udp是非建立连接直接发数据的,一个端口号被一个进制占用。

(以上是解释一下这两个东东一点基本定义)

源端口号就是(从哪里来)

目的端口号(到哪里去)

实作二 分析 TCP 建立和释放连接

  1. 打开浏览器访问 qige.io 网站,用 Wireshark 抓包(可用 tcp 过滤后再使用加上 Follow TCP Stream),不要立即停止 Wireshark 捕获,待页面显示完毕后再多等一段时间使得能够捕获释放连接的包。

2.请在你捕获的包中找到三次握手建立连接的包,并说明为何它们是用于建立连接的,有什么特征。

这里三个包主要观察syn和acknowledgment

第一次的时候是syn请求连接表示1,第二此ack收到连接请求,转为1表示确认,第三次就是应答就ack还是1,syn不在请求,就为0

特征:除了syn和ack其余的标志都没有改变,进行传输的包很小,目的是快速建立tcp连接

3.请在你捕获的包中找到四次挥手释放连接的包,并说明为何它们是用于释放连接的,有什么特征。

在完成这一段实验中,在抓包途中观察了有一个fin和ack同时出现的情况,不知道是断开了什么连接,最终需要完成的地方是抓包的末端就在途中。

 这里第一次挥手是标蓝色的地方,第二次和第三次是合并在了一起,或者第二次挥手被省略了,因为第二排就有fin=1。

这里的过程是:第一次:客户方没有传的了,进入等待关闭阶段,第二次:服务方收到客户关闭请求并返回请求,此时服务方可能还没有发完,发完了就进入等待关闭阶段,第三次:服务方发送完了并发出请求,且等待客户确定关闭。第四次:客户端收到请求,发出确定这个信息,服务器收到后关闭,客户如果没事了他也会之后关闭。(有点口语化)

问题一

去掉 Follow TCP Stream,即不跟踪一个 TCP 流,你可能会看到访问 qige.io 时我们建立的连接有多个。请思考为什么会有多个连接?作用是什么?


一个tcp是可以进行多个http请求的,建立多个连接应该是tcp在完成一段数据发送后断掉了,之后数据发送又进行了连接,而之前的连接并没有被取消,或者多个连接可以提升效率。

我们上面提到了释放连接需要四次挥手,有时你可能会抓到只有三次挥手。原因是什么?


在此处我就遇到了如此情况,是第二次没有,如上述表达的一样,第二次挥手的条件是服务端还有未完成的数据没有发送才进行第二次挥手,如果他发送已经完毕了,就直接第三步发出关闭连接的请求。所以少了一次挥手。

应用层

应用层的协议非常的多,我们只对 DNS 和 HTTP 进行相关的分析。

实作一 了解 DNS 解析

  1. 先使用 ipconfig /flushdns 命令清除缓存,再使用 nslookup qige.io 命令进行解析,同时用 Wireshark 任意抓包(可用 dns 过滤)。

  2. 你应该可以看到当前计算机使用 UDP,向默认的 DNS 服务器的 53 号端口发出了查询请求,而 DNS 服务器的 53 号端口返回了结果。

  3. 可了解一下 DNS 查询和应答的相关字段的含义

​ 1.QR:查询/应答标志。0表示这是一个查询报文,1表示这是一个应答报文
2.opcode,定义查询和应答的类型。0表示标准查询,1表示反向查询(由IP地址获得主机域名),2表示请求服务器状态
3.AA,授权应答标志,仅由应答报文使用。1表示域名服务器是授权服务器
4.TC,截断标志,仅当DNS报文使用UDP服务时使用。因为UDP数据报有长度限制,所以过长的DNS报文将被截断。1表示DNS报文超过512字节,并被截断
5.RD,递归查询标志。1表示执行递归查询,即如果目标DNS服务器无法解析某个主机名,则它将向其他DNS服务器继续查询,如此递归,直到获得结果并把该结果返回给客户端。0表示执行迭代查询,即如果目标DNS服务器无法解析某个主机名,则它将自己知道的其他DNS服务器的IP地址返回给客户端,以供客户端参考
6.RA,允许递归标志。仅由应答报文使用,1表示DNS服务器支持递归查询
7.zero,这3位未用,必须设置为0
8.rcode,4位返回码,表示应答的状态。常用值有0(无错误)和3(域名不存在)清除缓存

问题

你可能会发现对同一个站点,我们发出的 DNS 解析请求不止一个,思考一下是什么原因?


Dns负载均衡,造成了会有多个解析不止一个。用户向dns服务器请求域名解析,返回一个ip地址,然后浏览器向服务器集群发出请求,服务器集群可能有多个ip地址。

实作二 了解 HTTP 的请求和应答

  1. 打开浏览器访问 qige.io 网站,用 Wireshark 抓包(可用http 过滤再加上 Follow TCP Stream),不要立即停止 Wireshark 捕获,待页面显示完毕后再多等一段时间以将释放连接的包捕获。

  1. 请在你捕获的包中找到 HTTP 请求包,查看请求使用的什么命令,如:GET, POST。并仔细了解请求的头部有哪些字段及其意义。

    GET**:从服务器请求数据后获取服务端数据** **,get请求方式:**URL src/href、表单(form

    POST**:就是发送、提交。向服务器提交****/**发送要被处理的数据。

User-Agent:表明自己是什么浏览器

Host:访问的域名ip

Accept:告诉WEB服务器自己接受什么介质类型,/ 表示任何类型,type/* 表示该类型下的所有子类型

Accept-Encoding: 浏览器申明自己接收的编码方法

Accept-Language:浏览器申明自己接收的语言

2.请在你捕获的包中找到 HTTP 应答包,查看应答的代码是什么,如:200, 304, 404 等。并仔细了解应答的头部有哪些字段及其意义。

200:交易成功;
304:客户端已经执行了GET,但文件未变化;
404:没有发现文件、查询或URl;

建议:

HTTP 请求和应答的头部字段值得大家认真的学习,因为基于 Web 的编程中我们将会大量使用。如:将用户认证的令牌信息放到头部,或者把 cookie 放到头部等。

问题

刷新一次 qige.io 网站的页面同时进行抓包,你会发现不少的 304 代码的应答,这是所请求的对象没有更改的意思,让浏览器使用本地缓存的内容即可。那么服务器为什么会回答 304 应答而不是常见的 200 应答?

304读取的是已经缓存的本地文件,不需要重新向服务器发送请求再完全的返回数据,这样节约时间,花费资源少。

, POST`。并仔细了解请求的头部有哪些字段及其意义。

GET**:从服务器请求数据后获取服务端数据** **,get请求方式:**URL src/href、表单(form

POST**:就是发送、提交。向服务器提交****/**发送要被处理的数据。

User-Agent:表明自己是什么浏览器

Host:访问的域名ip

Accept:告诉WEB服务器自己接受什么介质类型,/ 表示任何类型,type/* 表示该类型下的所有子类型

Accept-Encoding: 浏览器申明自己接收的编码方法

Accept-Language:浏览器申明自己接收的语言

2.请在你捕获的包中找到 HTTP 应答包,查看应答的代码是什么,如:200, 304, 404 等。并仔细了解应答的头部有哪些字段及其意义。

200:交易成功;
304:客户端已经执行了GET,但文件未变化;
404:没有发现文件、查询或URl;

建议:

HTTP 请求和应答的头部字段值得大家认真的学习,因为基于 Web 的编程中我们将会大量使用。如:将用户认证的令牌信息放到头部,或者把 cookie 放到头部等。

问题

刷新一次 qige.io 网站的页面同时进行抓包,你会发现不少的 304 代码的应答,这是所请求的对象没有更改的意思,让浏览器使用本地缓存的内容即可。那么服务器为什么会回答 304 应答而不是常见的 200 应答?

304读取的是已经缓存的本地文件,不需要重新向服务器发送请求再完全的返回数据,这样节约时间,花费资源少。

3. Cisco Packet Tracer 实验

直接连接两台 PC 构建 LAN

将两台 PC 直接连接构成一个网络。注意:直接连接需使用交叉线。
进行两台 PC 的基本网络配置,只需要配置 IP 地址即可,然后相互 ping 通即成功。

用交换机构建 LAN

构建如下拓扑结构的局域网:

  1. PC0 能否 ping 通 PC1、PC2、PC3 ?
    能ping通pc1,不能ping通pc2,pc3

  2. PC3 能否 ping 通 PC0、PC1、PC2 ?为什么?
    不能ping通pc0,pc1,能ping通pc2.因为pc2与pc3在同一子网下,其余两个不是

3. 将 4 台 PC 的掩码都改为 255.255.0.0 ,它们相互能 ping 通吗?为什么?
可以,因为他们现在都处于同一子网之下。

  1. 使用二层交换机连接的网络需要配置网关吗?为什么?
    不需要,因为没有连接到外网去,如果需要的话此处也没有进行配置也能通信,

交换机接口地址列表

二层交换机是一种即插即用的多接口设备,它对于收到的帧有 3 种处理方式:广播、转发和丢弃(请弄清楚何时进行何种操作)。那么,要转发成功,则交换机中必须要有接口地址列表即 MAC 表,该表是交换机通过学习自动得到的!

仍然构建上图的拓扑结构,并配置各计算机的 IP 在同一个一个子网,使用工具栏中的放大镜点击某交换机如左边的 Switch3,选择 MAC Table,可以看到最初交换机的 MAC 表是空的,也即它不知道该怎样转发帧(那么它将如何处理?),用 PC0 访问(ping)PC1 后,再查看该交换机的 MAC 表,现在有相应的记录,请思考如何得来。随着网络通信的增加,各交换机都将生成自己完整的 MAC 表,此时交换机的交换速度就是最快的!


生成树协议(Spanning Tree Protocol)

交换机在目的地址未知或接收到广播帧时是要进行广播的。如果交换机之间存在回路/环路,那么就会产生广播循环风暴,从而严重影响网络性能。
而交换机中运行的 STP 协议能避免交换机之间发生广播循环风暴。
只使用交换机,构建如下拓扑:

这是初始时的状态。我们可以看到交换机之间有回路,这会造成广播帧循环传送即形成广播风暴,严重影响网络性能。
随后,交换机将自动通过生成树协议(STP)对多余的线路进行自动阻塞(Blocking),以形成一棵以 Switch4 为根(具体哪个是根交换机有相关的策略)的具有唯一路径树即生成树!
经过一段时间,随着 STP 协议成功构建了生成树后,Switch5 的两个接口当前物理上是连接的,但逻辑上是不通的,处于Blocking状态(桔色)如下图所示:

在网络运行期间,假设某个时候 Switch4 与 Switch5 之间的物理连接出现问题(将 Switch4 与 Switch5 的连线剪掉),则该生成树将自动发生变化。Switch5 上方先前 Blocking 的那个接口现在活动了(绿色),但下方那个接口仍处于 Blocking 状态(桔色)。如下图所示:

注意
交换机的 STP 协议即生成树协议始终自动保证交换机之间不会出现回路,从而形成广播风暴。


路由器配置初步

我们模拟重庆交通大学和重庆大学两个学校的连接,构建如下拓扑

说明一
交通大学与重庆大学显然是两个不同的子网。在不同子网间通信需通过路由器。

路由器的每个接口下至少是一个子网,图中我们简单的规划了 3 个子网:

左边路由器是交通大学的,其下使用交换机连接交通大学的网络,分配网络号 192.168.1.0/24,该路由器接口也是交通大学网络的网关,分配 IP 为 192.168.1.1
右边路由器是重庆大学的,其下使用交换机连接重庆大学的网络,分配网络号 192.168.3.0/24,该路由器接口也是重庆大学网络的网关,分配 IP 为 192.168.3.1
两个路由器之间使用广域网接口相连,也是一个子网,分配网络号 192.168.2.0/24

说明二
现实中,交通大学和重庆大学的连接是远程的。该连接要么通过路由器的光纤接口,要么通过广域网接口即所谓的 serial 口(如拓扑图所示)进行,一般不会通过双绞线连接(为什么?)。

下面我们以通过路由器的广域网口连接为例来进行相关配置。请注意:我们选用的路由器默认没有广域网模块(名称为 WIC-1T 等),需要关闭路由器后添加,然后再开机启动。

说明三
在模拟的广域网连接中需注意 DCE 和 DTE 端(连线时线路上有提示,带一个时钟标志的是 DCE 端。有关 DCE 和 DTE 的概念请查阅相关资料。),在 DCE 端需配置时钟频率 64000

说明四
路由器有多种命令行配置模式,每种模式对应不同的提示符及相应的权限。

请留意在正确的模式下输入配置相关的命令。

User mode:用户模式
Privileged mode:特权模式
Global configuration mode:全局配置模式
Interface mode:接口配置模式
Subinterface mode:子接口配置模式

说明五
在现实中,对新的路由器,显然不能远程进行配置,我们必须在现场通过笔记本的串口与路由器的 console 接口连接并进行初次的配置(注意设置比特率为9600)后,才能通过网络远程进行配置。这也是上图左上画出笔记本连接的用意。

说明六
在路由器的 CLI 界面中,可看到路由器刚启动成功后,因为无任何配置,将会提示是否进行对话配置(Would you like to enter the initial configuration dialog?),因其步骤繁多,请选择 NO

比如交通大学路由器的初步配置可以如下:

🗣 注意

在我们的实验中可不进行如下的配置,但在现实中为了安全,以下的登录及特权密码等配置是必须的,否则每个人都可操作你的路由器或交换机!


拓扑图中路由器各接口配置数据如下:

接口名

IP

子网掩码

交通大学 Router2 以太网口 192.168.1.1 255.255.255.0

交通大学 Router2 广域网口 192.168.2.1 255.255.255.0

重庆大学 Router3 以太网口 192.168.3.1 255.255.255.0

重庆大学 Router3 广域网口 192.168.2.2 255.255.255.0

拓扑图中各 PC 配置数据如下:

节点名

IP 子网掩码 网关

交通大学 PC0 192.168.1.2 255.255.255.0 192.168.1.1

交通大学 PC1 192.168.1.3 255.255.255.0 192.168.1.1

重庆大学 PC2 192.168.3.2 255.255.255.0 192.168.3.1

重庆大学 PC3 192.168.3.3 255.255.255.0 192.168.3.1

交通大学路由器基本配置如下:
以太网口:

Router>enable   // 从普通模式进入特权模式
Router#configure terminal   // 进入全局配置模式
Router(config)#interface f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 192.168.1.1 255.255.255.0   // 配置该接口的 IP
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式
Router#


广域网口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 192.168.2.1 255.255.255.0   //配置该接口的 IP
Router(config-if)#clock rate 64000    // 其为 DCE 端,配置时钟频率
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式
Router#

静态路由

静态路由是非自适应性路由协议,是由网络管理人员手动配置的,不能够根据网络拓扑的变化而改变。 因此,静态路由简单高效,适用于结构非常简单的网络。

在当前这个简单的拓扑结构中我们可以使用静态路由,即直接告诉路由器到某网络该怎么走即可。

在前述路由器基本配置成功的情况下使用以下命令进行静态路由协议的配置:

交通大学路由器静态路由配置:
Router>en // 从普通模式进入特权模式
Router#conf t // 进入全局配置模式
Router(config)#ip route 192.168.3.0 255.255.255.0 192.168.2.2 // 告诉交通大学路由器到 192.168.3.0 这个网络的下一跳是 192.168.2.2
Router(config)#exit //退到特权模式
Router#show ip route //查看路由表

重庆大学路由器静态路由配置:
Router>en // 从普通模式进入特权模式
Router#conf t // 进入全局配置模式
Router(config)#ip route 192.168.1.0 255.255.255.0 192.168.2.1 // 告诉重庆大学路由器到 192.168.1.0 这个网络的下一跳是 192.168.2.1
Router(config)#exit //退到特权模式
Router#show ip route //查看路由表


查看路由表你可看到标记为 S 的一条路由,S 表示 Static 。

至此,这些 PC 能全部相互 ping 通!


动态路由 RIP

动态路由协议采用自适应路由算法,能够根据网络拓扑的变化而重新计算机最佳路由。

RIP 的全称是 Routing Information Protocol,是距离矢量路由的代表(目前虽然淘汰,但可作为我们学习的对象)。使用 RIP 协议只需要告诉路由器直接相连有哪些网络即可,然后 RIP 根据算法自动构建出路由表。

因为我们模拟的网络非常简单,因此不能同时使用静态和动态路由,否则看不出效果,所以我们需要把刚才配置的静态路由先清除掉。

清除静态路由配置:
直接关闭路由器电源。相当于没有保存任何配置,然后各接口再按照前面基本配置所述重新配置 IP 等参数(推荐此方法,可以再熟悉一下接口的配置命令);
使用 no 命令清除静态路由。在全局配置模式下,交通大学路由器使用:no ip route 192.168.3.0 255.255.255.0 192.168.2.2,重庆大学路由器使用:no ip route 192.168.1.0 255.255.255.0 192.168.2.1 。相当于使用 no 命令把刚才配置的静态路由命令给取消。

动态路由 OSPF

OSPF(Open Shortest Path First 开放式最短路径优先)是一个内部网关协议(Interior Gateway Protocol,简称 IGP), 用于在单一自治系统(Autonomous System,AS)内决策路由。OSPF 性能优于 RIP,是当前域内路由广泛使用的路由协议。

同样的,我们需要把刚才配置的 RIP 路由先清除掉。

清除 RIP 路由配置:
直接关闭路由器电源。相当于没有保存任何配置,然后各接口再按照前面基本配置所述重新配置 IP 等参数
使用 no 命令清除 RIP 路由。在全局配置模式下,各路由器都使用:no router rip 命令进行清除

交通大学路由器 OSPF 路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1(可暂不理会进程号概念)
Router(config-router)#network 192.168.1.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.1.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 192.168.2.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.2.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#^z   //直接退到特权模式
Router#show ip route    //查看路由表

重庆大学路由器 OSPF 路由配置:
Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1
Router(config-router)#network 192.168.3.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.3.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 192.168.2.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.2.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#^z   //直接退到特权模式
Router#show ip route    //查看路由表


查看路由表你可看到标记为 O 的一条路由,O 表示 OSPF 。

至此,这些 PC 能全部相互 ping 通!

基于端口的网络地址翻译 PAT

网络地址转换(NAT,Network Address Translation)被各个 Internet 服务商即 ISP 广泛应用于它们的网络中,也包括 WiFi 网络。 原因很简单,NAT 不仅完美地解决了 lP 地址不足的问题,而且还能够有效地避免来自网络外部的攻击,隐藏并保护网络内部的计算机。

NAT 的实现方式一般有三种:

静态转换: Static NAT
动态转换: Dynamic NAT
端口多路复用: OverLoad
端口多路复用使用最多也最灵活。OverLoad 是指不仅改变发向 Internet 数据包的源 IP 地址,同时还改变其源端口,即进行了端口地址转换(PAT,Port Address Translation)。

采用端口多路复用方式,内部网络的所有主机均可共享一个合法外部 IP 地址实现对 Internet 的访问,从而可以最大限度地节约IP地址资源。 同时,又可隐藏网络内部的所有主机,有效避免来自 Internet 的攻击。因此,目前网络中应用最多的就是端口多路复用方式。

我们仍然使用重庆交通大学和重庆大学两个学校的拓扑进行 PAT 实验。我们需要保证两个学校的路由已经配置成功,无论使用静态路由还是动态路由,以下我们给出完整的配置过程:设定这两个学校的路由器使用 OSPF 协议,模拟交通大学使用内部 IP 地址(192.168.1.0/24),模拟重庆大学使用外部 IP 地址(8.8.8.0/24),两个路由器之间使用外部 IP 地址(202.202.240.0/24),在交通大学的出口位置即广域网口实施 PAT。

拓扑图中各 PC 配置数据如下:

节点名 IP 子网掩码 网关
交通大学 PC0 192.168.1.2 255.255.255.0 192.168.1.1
交通大学 PC1 192.168.1.3 255.255.255.0 192.168.1.1
重庆大学 PC2 8.8.8.2 255.255.255.0 8.8.8.1
重庆大学 PC3 8.8.8.3 255.255.255.0 8.8.8.1
请留意重庆大学两个 PC 的网络配置发生改变,我们模拟为外部/公网 IP 地址!

拓扑图中路由器各接口配置数据如下:

接口名 IP 子网掩码
交通大学 Router2 以太网口 192.168.1.1 255.255.255.0
交通大学 Router2 广域网口 202.202.240.1 255.255.255.0
重庆大学 Router3 以太网口 8.8.8.1 255.255.255.0
重庆大学 Router3 广域网口 202.202.240.2 255.255.255.0


请留意重庆大学路由器两个接口及交通大学广域网口的网络配置发生改变,然后配置 OSPF 路由,最后在交通大学路由器的广域网口实施 PAT!

交通大学路由器接口配置如下:
以太网口:
Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 192.168.1.1 255.255.255.0   // 配置 IP
Router(config-if)#no shutdown   // 激活接口

广域网口:
Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 202.202.240.1 255.255.255.0   //配置 IP
Router(config-if)#clock rate 64000    // 其为 DCE 端,配置时钟频率
Router(config-if)#no shutdown   // 激活接口

重庆大学路由器接口配置如下:

以太网口:
Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 8.8.8.1 255.255.255.0   // 配置 IP
Router(config-if)#no shutdown   // 激活接口

广域网口:
Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 202.202.240.2 255.255.255.0   // 配置 IP
Router(config-if)#no shutdown   // 激活接口
交通大学路由器 OSPF 路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1(可暂不理会进程号概念)
Router(config-router)#network 192.168.1.0 0.0.0.255 area 0   // 自治域0中的属于192.168.1.0/24网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 202.202.240.0 0.0.0.255 area 0   // 自治域0中的属于202.202.240.0/24网络的所有主机(反向掩码)参与 OSPF
重庆大学路由器 OSPF 路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1
Router(config-router)#network 202.202.240.0 0.0.0.255 area 0   // 自治域0中的属于202.202.240.0/24网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 8.8.8.0 0.0.0.255 area 0   // 自治域0中的属于8.8.8.0/24网络的所有主机(反向掩码)参与 OSPF

此时,这些 PC 能全部相互 ping 通!如在交通大学内部使用 PC0(192.168.1.2)来 ping 重庆大学的PC2(8.8.8.2)应该成功。

下面我们将重庆大学的路由器看着 Internet 中的骨干路由器,那么这些路由器将不会转发内部/私有 IP 地址的包(直接丢弃)。我们通过在重庆大学路由器上实施访问控制 ACL ,即丢弃来自交通大学(私有 IP 地址)的包来模拟这个丢包的过程。

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#access-list 1 deny 192.168.1.0 0.0.0.255  // 创建 ACL 1,丢弃/不转发来自 192.168.1.0/24 网络的所有包
Router(config)#access-list 1 permit any  // 添加 ACL 1 的规则,转发其它所有网络的包
Router(config)#int s0/0   // 配置广域网口
Router(config-if)#ip access-group 1 in  // 在广域网口上对进来的包实施 ACL 1 中的规则,实际就是广域网口如果收到来自 192.168.1.0/24 IP的包即丢弃


虚拟局域网 VLAN

在实际网络中(如),你可看到路由器一般位于网络的边界,而内部几乎全部使用交换机连接。

前面我们分析过,交换机连接的是同一个子网! 显然,在这样一个大型规模的子网中进行广播甚至产生广播风暴将严重影响网络性能甚至瘫痪。

另外我们也已经知道,其实学校是划分了 N 多个子网的,那么这些交换机连接的就绝不是一个子网!这样矛盾的事情该如何解释呢?我们实际上使用了支持 VLAN 的交换机!而前述的交换机只是普通的 2 层交换机(或者我们把它当作 2 层交换机在使用。

VLAN(Virtual Local Area Network)即虚拟局域网。通过划分 VLAN,我们可以把一个物理网络划分为多个逻辑网段即多个子网。

划分 VLAN 后可以杜绝网络广播风暴,增强网络的安全性,便于进行统一管理等。

在 CPT 中构建如下图所示拓扑:


Cisco 2960 交换机是支持 VLAN 的交换机,共有 24 个 100M 和 2 个 1000M 以太网口。默认所有的接口都在 VLAN 1 中,故此时连接上来的计算机都处于同一 VLAN,可以进行通信。

下面我们就该交换机的 24 个 100M 接口分为 3 个部分,划分到 3 个不同的 VLAN 中,id 号分别设为 10、20、30,且设置别名(computer、communication、electronic)以利于区分和管理。

Switch>en
Switch#conf t
Switch(config)#vlan 10    // 创建 id 为 10 的 VLAN(缺省的,交换机所有接口都属于VLAN 1,不能使用)
Switch(config-vlan)#name computer    // 设置 VLAN 的别名
Switch(config-vlan)#exit
Switch(config)#int vlan 10    // 该 VLAN 为一个子网,设置其 IP,作为该子网网关
Switch(config-if)#ip address 192.168.0.1 255.255.255.0
Switch(config-if)#exit
Switch(config)#vlan 20    // 创建 id 为 20 的 VLAN
Switch(config-vlan)#name communication    //设置别名
Switch(config-vlan)#exit
Switch(config)#int vlan 20
Switch(config-if)#ip addr 192.168.1.1 255.255.255.0
Switch(config-if)#exit
Switch(config)#vlan 30    // 创建 id 为 20 的 VLAN
Switch(config-vlan)#name electronic    // 设置别名
Switch(config-vlan)#exit
Switch(config)#int vlan 30
Switch(config-if)#ip add 192.168.2.1 255.255.255.0
Switch(config-if)#exit
Switch(config)#int range f0/1-8    // 成组配置接口(1-8)
Switch(config-if-range)#switchport mode access    // 设置为存取模式
Switch(config-if-range)#switchport access vlan 10    // 划归到 VLAN 10 中
Switch(config-if-range)#exit
Switch(config)#int range f0/9-16
Switch(config-if-range)#switchport mode access
Switch(config-if-range)#switchport access vlan 20
Switch(config-if-range)#exit
Switch(config)#int range f0/17-24
Switch(config-if-range)#switchport mode access
Switch(config-if-range)#switchport access vlan 30
Switch(config-if-range)#^Z
Switch#show vlan // 查看 VLAN 的划分情况

至此,在该交换机上我们就划分了 3 个 VLAN(不包括缺省的 VLAN 1)。

各 VLAN 下 PC 的网络配置及连接的交换机接口如下表:

机器名 连接的接口 所属VLAN IP 子网掩码 网关
PC0 F0/1 VLAN 10 192.168.0.2 255.255.255.0 192.168.0.1
PC1 F0/2 VLAN 10 192.168.0.3 255.255.255.0 192.168.0.1
PC2 F0/17 VLAN 30 192.168.2.2 255.255.255.0 192.168.2.1
PC3 F0/9 VLAN 20 192.168.1.2 255.255.255.0 192.168.1.1
PC4 F0/10 VLAN 20 192.168.1.3 255.255.255.0 192.168.1.1
PC5 F0/18 VLAN 30 192.168.2.3 255.255.255.0 192.168.2.1
PC6 F0/19 VLAN 30 192.168.2.4 255.255.255.0 192.168.2.1

虚拟局域网管理 VTP

前一个实验我们在交换机上进行了 VLAN 的规划和划分。但在实际应用中,我们绝不允许在这些支持VLAN的交换机上进行随意的 VLAN 划分,如此将造成管理混乱!VLAN的划分必须得到统一的规划和管理,这就需要 VTP 协议。

VTP(VLAN Trunk Protocol)即 VLAN 中继协议。VTP 通过 ISL 帧或 Cisco 私有 DTP 帧(可查阅相关资料了解)保持 VLAN 配置统一性,也被称为虚拟局域网干道协议,它是思科私有协议。 VTP 统一管理、增加、删除、调整VLAN,自动地将信息向网络中其它的交换机广播。

此外,VTP 减小了那些可能导致安全问题的配置,只要在 VTP Server 做相应设置,VTP Client 会自动学习 VTP Server 上的 VLAN 信息。

为演示 VTP,重新构建如下拓扑结构:

注意:

作为干线,两个 2960 交换机和核心的 3560 交换机应该使用 Gbit 口相连。这虽然不是必须,但现实中这样连接性能最好。

3560 交换机是网络中的核心交换机,我们将其作为 VTP Server,VTP 域及 VLAN 将在其上创建和管理。

两个 2960 交换机是是局域网中的汇聚层/接入层交换机,将作为 VTP Client,可决定加入的 VTP 域和 VLAN。

目前该网络都属于 VLAN 1,也即这些 PC 是可以相互通信的。前面说过,无论对于性能、管理还是安全等而言,现实中我们必须进行 VLAN 划分。

现在我们的要求是:新建两个 VLAN,然后让 PC0 和 PC1 属于 VLAN 2,PC1 和 PC3 属于 VLAN 3。

我们将在核心交换机 3560上进行如下工作:

设置为 server 模式,VTP 域为 cqjtu
新建 VLAN 2,网络号 192.168.1.0/24,网关 192.168.1.1
新建 VLAN 3,网络号 192.168.2.0/24,网关 192.168.2.1

Switch>en
Switch#conf t
Switch(config)#hostname 3560    // 更改交换机名称(可选)
3560(config)#vtp domain cqjtu   // 设置 VTP 域名称为 cqjtu
3560(config)#vtp mode server    // 设置其为 VTP 服务器模式
3560(config)#vlan 2             // 新建VLAN 2
3560(config-vlan)#name computer // 设置 VLAN 2 的别名(可选)
3560(config-vlan)#exit
3560(config)#vlan 3             // 再建 VLAN 3
3560(config-vlan)#name communication    //设置 VLAN 2 的别名(可选)
3560(config-vlan)#exit
3560(config)#int vlan 2    // 配置接口 VLAN 2,它将是该子网(左边)的网关
3560(config-if)#ip address 192.168.1.1 255.255.255.0
3560(config-if)#exit
3560(config)#int vlan 3    // 配置接口 VLAN 3,它将是该子网(右边)的网关
3560(config-if)#ip address 192.168.2.1 255.255.255.0

我们将在左边交换机 2960A 上进行如下工作:

加入名为 cqjtu 的 VTP 域
配置与核心交换机 3560 连接的千兆接口 g0/1 为 trunk 模式
将接口 f0/1 划分到 VLAN 2 中
将接口 f0/2 划分到 VLAN 3 中
2960A(左边) VTP Client 配置:

Switch>en
Switch#conf t
Switch(config)#hostname 2960A    // 更改交换机名称(可选)
2960A(config)#vtp domain cqjtu   // 加入名为 cqjtu 的 VTP 域
2960A(config)#vtp mode client    // 设置模式为 VTP 客户
2960A(config)#int g0/1    // 配置与核心交换机 3560 连接的 g0/1 千兆接口
2960A(config-if)#switchport mode trunk    // 设置该接口为中继(trunk)模式
2960A(config-if)#switchport trunk allowed vlan all  // 允许为所有的 VLAN 中继
2960A(config-if)#exit
2960A(config)#int f0/1    // 配置接口 1
2960A(config-if)#switchport mode access    // 设置该接口为正常访问模式
2960A(config-if)#switchport access vlan 2  // 将接口划分到 VLAN 2
2960A(config-if)#exit
2960A(config)#int f0/2    // 配置接口 2
2960A(config-if)#switchport mode access    // 设置该接口为正常访问模式
2960A(config-if)#switchport access vlan 3  // 将接口划分到 VLAN 3

我们将在右边交换机 2960B 上进行同样的工作:

加入名为 cqjtu VTP 域
配置与核心交换机 3560 连接的千兆接口 g0/1 为 trunk 模式
将接口 f0/1 划分到 VLAN 2 中
将接口 f0/2 划分到 VLAN 3 中
2960B(右边) VTP Client 配置:

Switch>en
Switch#conf t
Switch(config)#hostname 2960B    // 更改交换机名称(可选)
2960B(config)#vtp domain cqjtu   // 加入名为 cqjtu 的 VTP 域
2960B(config)#vtp mode client    // 设置模式为 VTP 客户
2960B(config)#int g0/1    // 配置与核心交换机 3560 连接的 g0/1 千兆接口
2960B(config-if)#switchport mode trunk    // 设置该接口为中继(trunk)模式
2960B(config-if)#switchport trunk allowed vlan all  // 允许为所有的 VLAN 中继
2960B(config-if)#exit
2960B(config)#int f0/1    // 配置接口 1
2960B(config-if)#switchport mode access    // 设置该接口为正常访问模式
2960B(config-if)#switchport access vlan 2  // 将接口划分到 VLAN 2
2960B(config-if)#exit
2960B(config)#int f0/2    // 配置接口 2
2960B(config-if)#switchport mode access    // 设置该接口为正常访问模式
2960B(config-if)#switchport access vlan 3  // 将接口划分到 VLAN 3

试一试

使用 PC0(192.168.1.2) ping PC1(192.168.2.2) 的结果如何?使用 PC0 ping PC2 的结果如何?想想为什么?

DHCP、DNS及Web服务器简单配置

动态主机配置 DHCP、域名解析 DNS 以及 Web 服务在日常应用中作用巨大,我们构建如下简单的拓扑来进行练习。


该拓扑中,服务器及客户机都连在同一交换机上。为简单起见,服务器 Server-PT 同时作为 DHCP、DNS 以及 Web 服务器,各客户机无需配置,将自动获取网络配置。

点击 CPT 拓扑图中的 Server 图标,设置其静态 IP 地址为 19.89.6.4/24,然后选择 Service 进行如下相关配置:

机器名 配置项目 说明
Server HTTP 开启即可
Server DNS 19.89.6.4:www.google、www.baidu
Server DHCP 地址池开始地址:19.89.6.10/24,并返回DNS地址
PC 网络配置 自动获取

试一试
先查看各 PC,看看是否获得网络配置 因为我们在 DNS 服务器中把谷歌和百度的 IP 都设为了 19.89.6.4,即Server-PT,所以,如果打开 PC0 的浏览器,输入 www.google 或者 www.baidu,我们都应该看到默认的 Server-PT 这个 Web 服务器的主页

WLAN初步配置

WLAN 即 WiFi 当前也是广泛的应用在各种场景。

我们通过构建如下拓扑的一个家庭 WLAN 来练习一下其相关的配置:

笔记本及台式机默认只有有线网卡,请先关机,在关机状态下删除有线网卡,添加无线网卡,然后再开机。

一般地,我们需要配置无线路由器的基本网络配置(IP、掩码、网关、DNS 等,现实中多为自动获取),然后再配置无线路由器的无线访问部分如连接密码及加密类型等,并开启 DHCP 功能等。有关配置请参考相关资料。

4.关于实验的部分理解

ip近乎于一个计算机上网的身份证,无论是寻找目标主机还是干一点什么事情了解目标ip都是很重要的。此次实验对于最基础的简单的命令有了更多的了解,比如第一步就是ipconfig /all了解自己主机的ip信息,自己处于什么子网怎么出去上网的,上网交换信息时经过了什么节点等等等。

除了这样一些关于计算机网络的基础命令信息和大致的形象。本次实验还让我印象深刻就是arp攻击和三次握手和四次挥手的步骤了。arp攻击让我认识到在初期的时候哪怕看似完善的机制也会遭到攻击通过隐藏了自己ip伪装目标ip来引诱被攻击的主机对自己发送信息。另外就是有关于三次握手和四次挥手,这两个步骤让我知晓计算机有自己独特的逻辑机制,你应我答,就像是两个在写合同的人一样你说好我说好之后这样的合同才会生效,要不然就会失效,计算机就断开连接。综述:前路仍漫漫,来者潜心行。

更多推荐

计算机网络实验总结

本文发布于:2023-04-22 07:24:00,感谢您对本站的认可!
本文链接:https://www.elefans.com/category/jswz/110017178926e973e0a2c447ec252dab.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文标签:计算机网络

发布评论

评论列表 (有 0 条评论)
草根站长

>www.elefans.com

编程频道|电子爱好者 - 技术资讯及电子产品介绍!

  • 95324文章数
  • 24057阅读数
  • 0评论数